
isSI3 268 APPLICATIONS OF MULTI VARIATE STATISTICAL TECHNIQUES FOR t/3
COMPUTER PERFORMANCE EVALUATION(U) AIR FORCE INST OF
TECH WRIGHT-PATTERSON AFE OH SCHOOL OF ENGI.

UNCLASSIFIED G L BRUNDIDGE DEC 83 AFITiGCS/EE/83D-4 F/G 12/1 NLEhnlhEIhnhiEl
EhIEEIIIIIIIIE
ElhEEE~llllllI
EllEEEllEElhlE
EllllIEllIIhlE
lflflflflflflflflflflfl
EllllEEllElllE

L-0rn 5 1 1 6

%I %

- - .

MICROCOPY RESOLUTION TEST CHART

N-
'"" 'U

• "9".¢-" "" " ""

% ". 'l'b .° ., - o

' , I - ' ",. " "-, ' , .; "' '.

CO

.5-
~OF

APPLICATIONS OF MULTIVARIATE

STATISTICAL TECHNIQUES FOR

COMPUTER PERFORMANCE EVALUATION

COMI
THESIS

,kFIT/GCS/EE/83D-4 Gregory L. Brundidge

8 DTIC
C., ECTE

La2 214
_ DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

- ~4 U2 17 072

AFIT/GCS/EE/8 3D-4/

APPLICATIONS OF MULTIVARIATE

STATISTICAL TECHNIQUES FOR

COMPUTER PERFORMANCE EVALUATION

THESIS

AFIT/GCS/EE/83D-4 Gregory L. Brundidge

Capt USAF

DTIC
SELECT

E

Approved for public release; distribution unlimited

AFIT/GCS/EE/83D-4-

APPLICATIONS OF MULTIVARIATE

STATISTICAL TECHNIQUES FOR

COMPUTER PERFORMANCE EVALUATION

THESIS,

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

Accession Tor
NIlS GRA&Il
DTIC TAB
Unannounced 0
Justification

By
Distribution/
Availability Codes

by Avail and/orlt Special

Gregory L. Brundidge, B.S.

Capt USAF

Graduate Computer Science

December 1983

Approved for public release; distribution unlimited.

* QM -. -- W-s IV- IL '-X N

AFIT/GCS/EE/83D-4

Preface

This study was motivated by the continuing need for

practical and economical means to evaluate computer

systems. The multivariate statistical techniques examined

are still new to the CPE environment. However, as more

analysts become familiar with the possibilities provided by

the data analysis tools, usage should increase.

It is assumed that the reader has a working knowledge

of basic univariate statistics and is familiar with basic

principles underlying multivariate analysis. Emphasis is

placed on applications for the techniques and theoretical

0development has been kept to a minimum. The interested

reader should keep in mind that approaches and applications

used in this study were largely influenced by the system

being evaluated and the availability of all the necessary

resources to perform the various analyses. Therefore, prior

to attempting similar analyses one should make a good

assessment of the resources required. Special thanks are in

order for my advisor, Dr Hartrum and my readers Maj Joseph

W. Coleman, Capt Brian W. Woodruff, and Dr Gary B. Lamont.

Their inputs and assistance made this study a valuable

learning experience. I would also like to give a special

thank you to my wife who provided me with the constant

everyday support necessary to complete this study.

ii

AFIT/GCS/EE/8 3D-4

Contents

Preface .i

List of Figures . v

List of Tables .vi

Abstract .viii

Background . -1

Assumptions -5
Summary of Current Knowledge -5
Standards . -7
Approach . -7

II. Multivariate Analysis Techniques11-1
Multiple Linear Regression -1
Ridge Regression . * 0.. a. -4
Canonical Correlation6

Factor Analysis7

Discriminant Analysis9

Cluster Analysis * a 6 -9

III. Experimental Design Considerations 111-1
Current System Workload . .5 . -..... 2
Phrase Two-Data Sources -4
Phrase Three-Data Collection and Preparation . . . -7
Application of Multivariate Techniques -9

IV. Regression Analysis * 9 *. * e..*.....e 1V-1
Part 1-Ordinary Least Squares -1
Analysis Objective -1
Analysis Tools -3
Analysis Results- 3
Analysis of Results9

Further Analysis . 0 0 0 * 0 0 0 . 0 . a . . -9
Part 2-Ridge Regression -16
Analysis Objective -16
Conclusion . 0 a 0 0 . -23

V. Canonical Correlation V-1
Analysis objective -1
Analysis Results S *50 0 99500 0-

Extended Analysis * * 9 9 * e * . * * a 5 * -8
Interpretative Analysis -.10
Conclusion .9 11

iii

AFIT/GCS/EE/8 3D-4

I VI. Factor Analysis VI-1
Analysis Objective -1
Part 1-Principal Component Analysis -2
Analysis Results.* a *.. *a00 -2
Extended Analysis Using Computed Factors -7
Extended Analysis Results -8

Part 2-Classical Factor Analysis -10
Analysis Overview e * e -10
Analysis Results . . . -11
CPE Interpretation of Analysis Results -14
Conclusion -15

vile Discriminant Analysis VII-i
Analysis Objective-

Analysis Results -3
CPE Interpretation of Results -9
Conclusion . -10

Vill. Cluster Analysis VIII-l
Analysis Results and Interpretation * -3
Conclusion -7

IX. Conclusions and Recommendations . . IX-i
OLS Regression and Ridge Regression -2
Canonical Correlation -4
Factor Analysis a . 5
Discriminant Analysis7
Cluster Ana sis..............a... 0 a -8
Consolidated Analysis Approaches -10
SSC CPE Observatns.14
Performance Hypotheses -15

Appendix A: The VAX 11/780 System Architecture and

UNIX Operating System .*.**.*..*.* A-i

Appendix B: Data Collection and Preparation. . B-i

Bibliography BIB-i

iv

AFIT/GCS/EE/8 3D-4

List of Figures

Figures Page

111I-1 Typical SSC Workload 111-3

iv-2 Generated Ridge Trace IV-19

IX-1 Possible Consolidated
Approaches 0 IX-li

A-1 VAX Architecture (Block Diagram) . . . A-3

A-2 VAX Architecture (PMS) A-4

0v

AFIT/GCS/EE/S 3D-4

List of Tables

Table Page

111-1 Software Monitor Description 111-5

IV-la Cpu User-Mode Utilization

IV-lb Cpu System-Mode Utilization

IV-lC Benchmark Response Time Model . . . IV-13

IV-ld Average Real Time Response
Time Model .. .*.. IV-14

IV-le Process Run Queue Model IV-15

IV-2 Comparison of lavm' Models IV-23

V-1 Canonical Correlations for
Response Time indicators V-4

v-2 Canonical Correlations for
Process Execution Status V-6

v-3 Canonical Correlations for
Cpu Utilization * * v-7

v-4 Redundancy Measures for Cpu
Utilization Status V-9

VI-l Selected Principal Component
F actors . * * * . * . * . . * VI-3

VI-2 Principal Component Factor
Groupings VI-5

VI-3 Factor Interpretations VI-6

VI-4 Selected Classical Factors VI-12

VI-5 Classical Factor Groupings VI-13

VII-l Canonical Discriminant
Functions VII-3

VII-2 Discriminant Functions
Evaluated at Centroids VII-4

vi

AFIT/GCS/EE/83D-4

VII-3 Discriminant Function
Coefficients VII-6

VII-4 Classification Function

Coefficients VII-7

VII-5 Classification Results VII-8

VIII-l Cluster Means for Memory VIII-5

vii

WE A NO - - ~ -..- -~ -. ~. -- t-..-5. % ~ % *5*

AFIT/GCS/EE/83D-4

Abstract

In many situations the computer performance evaluation

(CPE) analyst has collected an abundance of computer system

performance data from the target system's accounting files

and software monitors. Traditionally, regression analysis

provided the primary means of examining CPE data sets, with

the emphasis being on modeling specific workload and

performance parameters. M~ultivariate analysis techniques

provide the analyst with additional analysis tools for the

examination of relationships, dimension, and structure of

large amounts of data. This, study examines possible CPE

0 applications for four multivariate analysis techniquesaThe

techniques studied include: Canonical Correlation, Factor

Analysis, Discriminant Analysis, and Cluster Analysis. Also

included in the study was the use of ordinary least squares

regression modeling and ridge regression modeling, to

exemplify the traditional problems encountered with use of

regression analysis. Depending on the performance

evaluation requirements, one or more of the multivariate

techniques or ridge regression could be used to perform a

preliminary or supplementary CPE data analysis.

viii

- ~%,4 ~ ~ -Sid

AFIT/GCS/EE/83D-4

CHAPTER I

INTRODUCTION

Background

Because of the constant need for timely processing of

information and data, an increasing number of the

U. S. Air Force's mission essential and routine operations

are being handled by computer. As applications for the

computer expand, so do the requirements for efficient

operating computer systems. Consequently, peformance

evaluation of Air Force computer systems has become an area

of increasing interest. While numerous tools are available

for evaluating computer system performance, many are not

practical for frequent or routine use. Due to cost,

additional equipment requirements, complexity and time

required, many evaluation tools are only practical after

performance problems are known to exist. Thus, instead of

simulation models, complex analytical analyses, or time

consuming system capacity studies, an alternate or

supplemental means of evaluating performance is the

examination of system-generated data from accounting files

and activity monitors. To perform an evaluation of this

type, requirements include access to, and knowledge and

understanding of an applicable data analysis technique(s).

Multiple linear regression analysis has been a useful

means of analyzing computer performance based on

I..1

AFIT/GCS/EE/83D-4

*.system-generated performance data. However, its use is

limited due to the assumptions of non-multicollinearity and

normality that must hold for the independent variables and

error terms. Thus, a requirement exists for further

examination of techniques that would enable computer

performance evaluation (CPE) based on empirical data

produced by the computer under study (target system).

To examine additional data analysis techniques, a

recent AFIT/EN thesis (Ref 11) was completed in which six

statistical techniques were evaluated for potential CPE

applications. Using regression analysis as a basis for

comparison, the techniques investigated included 1) ridge

regression, 2) automatic interaction detection (AID),

3) cluster analysis, 4) canonical correlation analysis,

5) factor analysis and 6) discriminant analysis. Reported

results suggested that the techniques have varying levels

of application to CPE. Since the tests performed to derive

these results used simulated performance data, further

examination of the techniques using real performance data

from a target computer should provide an increased
understanding of possible CPE applications. Applying the

techniques to real performance data would allow obtained

information to be evaluated in light of the observed actual

peformance of the target system. Thus, as a follow-on study

five of the statistical techniques listed above were

applied to real system-generated performance data in an

1-2

AFIT/GCS/EE/83D-4

attempt to evaluate the target computer's performance and

the usefulness of each technique as a CPE tool.

Problem

The problem investigated in this thesis effort was the

partial performance evaluation of AFIT's VAX 11/780

scientific support processor (SSC) using information gained

from applying the six data analysis and multivariate

techniques listed above. The performance evaluation was

partial because system performance was evaluated only to

the degree allowed by the multivariate techniques being

studied. It was hoped that the information gained about

system performance by applying the techniques would enable

*a specific definition of each of the techniques' possible

application(s) in a CPE environment. Since no routine CPE

practices (i.e. routine analysis of software monitor or

accounting file summary output) for the SSC existed at the

time this study was conducted, secondary objectives of the

evaluation included:

1) Providing background information for identi-

fication of possible performance improvement

areas.

2) Providing measurements and descriptions of the

workload currently processed by the system.

3) Providing a means of compiling performance and

use trends for use in forecasting future system

1-3

AFIT/GCS/EE/83D-4

demands.

In addition to being used as a means to establish CPE

applications for the multivariate techniques, the above

objectives were chosen to also provide the basic framework

for establishing routine CPE practices to monitor

performance of AFIT's VAX 11/780. It had been noted that

certain workloads resulted in a noticeable degradation in

VAX performance. However, it had not been determined

exactly what aspects of the workload caused the degraded

performance. As this performance evaluation progressed, it

was hoped that application of the multivariate techniques

would aid in identifying the causes of degraded

performance. Also, where possible, recommendations for

future prevention of the discovered causes of degradation

were made.

Scope

One of the primary goals of this thesis was to

evaluate the usefulness of selected multivariate techniques

as CPE tools. Therefore, only these techniques were used to

do the performance evaluation. Consequently, the

performance evaluation was not a total evaluation in that

not all available CPE tools, such as simulation and

analytical techniques, were used. Though other multivariate

techniques exist, only those mentioned in the problem

statement were evaluated. The study was conducted using

1-4

-V-fwut

AFIT/GCS/EE/83D-4

data from a VAX 11/780 running the UNIX operating system.

Consequently, in some instances, results reflected

performance characteristics which were unique to this

system configuration and may differ from results of similar

tests on different systems or similar systems using a

different operating system. However, recommended CPE

applications for the techniques being studied should be

similar in many performance evaluation environments.

Assumptions

Throughout this thesis effort, no attempt was made to

improve or modify the software implementations of the

statistical techniques under study. It was assumed that

current literature on the application of each of the

techniques was valid and that no further development of the

application methods was necessary. Also, all techniques

used were assumed to be correct as they were implemented on

the VAX or CYBER.

Summary of Current Knowledge

With the exception of multiple linear regression, use

of the multivariate techniques considered in this thesis,

for CPE purposes, has been limited. The primary efforts

thus far have been two theses by Magavero (Ref 11) and

Stover (Ref 18). In Magavero's effort, each of the six

techniques was applied to selected data sets which were

generated using Computer Performance Evaluation Simulator

1-5

> T.ZW. 5TI NY' u ?'._ .. .r. ~ U . 4 . 9 . % . 4 . ,i -

AFIT/GCS/EE/83D-4

(CPESIM), a computer system simulation program. His primary

goal was to determine how the techniques could be used in

CPE. Realizing that each technique had specific

applications and theoretical limitations, Magavero applied

them to data sets which would allow him to determine how

well a technique described performance factors present in

the data. In the earlier thesis by Stover (Ref 18), three

techniques were examined, multiple linear regression,

automatic interaction detection and ridge regression. While

her approach was similar to Magavero's, she concentrated

her efforts in building empirical models and then rating

the techniques on how well they modelled the actual system

performance. Like Magavero, Stover also used data generated

by running CPESIM.

Other literature includes a paper by Hartrum and

Thompson entitled 'The Application of Clustering Techniques

to Computer Performance Modeling" (Ref 8) and a paper by A.

Agrawala and J. Mohr entitled "Some Results of the

Clustering Approach to Workload Modeling." (Ref 1) Both of

these papers were reports on results derived from examining

selected performance factors using cluster analysis.

In both of the referenced thesis efforts, simulated

performance data was used. The papers mentioned addressed

only one of the techniques. While other literature was

-4' available, usually only one technique was considered and

-- .~ ,reports were only on test results, with little or no

I-6

.4 ; . J , , ; -; - - S - - S ,-L . -

AFIT/GCS/EE/83D-4

.. " '* information addressing possible CPE applications. Thus, for

the reasons previously stated, extension of Magavero's

effort to include the use of real data was expected to

provide a better understanding of the applications that are

possible.

Standards

AWhere applicable, all interpretations of statistical

results were evaluated via use of the appropriate

statistical inference tests. For example, confidence

intervals were set at a minimum of 90% and an evaluation of

the derived results was done based on the size of the

calculated confidence intervals. The assumptions necessary

to apply each of the techniques was also used to evaluate

*the usefulness of the interpreted results.

Approach

With respect to the performance evaluation aspect of

this thesis effort, initial investigation was directed at

system understanding and familiarization. A study of the

VAX architecture and the UNIX operating system was

conducted. The study was expected to provide the necessary

understanding of the hardware configuration used at AFIT

and the function of the UNIX operating system running on

the AFIT VAX. The study revealed the performance

measurement tools that were available in the hardware and

software of the target system.

i. , . A survey of operating procedures was also done to

1-7

AFIT/GCS/EE/83D-4

, provide a good understanding of operator, analyst, and

system interaction. Since no CPE program currently existed

for the AFIT VAX, the survey included any CPE practices

that were currently being used for any of the other AFIT

systems.
After system familiarization was complete, performance

data available on the system was studied and analyzed for

identification of performance factors and related

performance parameters. Information gained from this study

was used to identify the performance and workload measures

that would be used when applying the multivariate

techniques.

The above preliminary studies along with the actual

generation of data sets and analysis of multivariate

techniques were done in ten phases, as follows:

1) A study of the performance characteristics of

the VAX and the current AFIT operational

practices was conducted to gain insight into the

performance environment from which the empirical

data was collected.

2) The data set collection procedures were selected

to ensure that the data sets used for statistical

tests reflected as closely as possible the desired

computer performance environment.

3) Sets of performance data from the computer chosen

for evaluation were analyzed to establish data

r-8

-I9' ' X ,~

AFIT/GCS/EE/83D-4

relationships, identify the criterion and

predictor variables, and to determine any other

parameters necessary for properly applying the

statistical techniques.

4) Each statistical technique was applied to the

selected data sets and results were recorded.

5) The results were interpreted to determine what

performance evaluation information was present

and then an attempt was made to evaluate the

computer system based on the obtained information.

6) When possible, statistical inference tests were

obtained. Evaluation was based on the level

of confidence that could be placed in the

interpretations reported and the assumptions

required for application of the technique.

10) Finally, based on the evaluation tests that were

done, recommendations were made as to the

potential applications of each of the

statistical techniques used. All significant

performance evaluation information obtained for

the target system was also reported.

Support

In order to accomplish the preliminary studies,

assistance from the system programmer and system operators

was necessary to gather the performance data required for

applying the statistical techniques. Since some of the

I-9

- . .. '

AFIT/GCS/EE/83D-4

.. techniques being studied were programs or part of

statistical packages on the Aeronautical Systems Division

(ASD) CYBER computer, assistance was also required to

transfer data between machines. Because there was no direct

communication line between the two computers, the

anticipated transfer technique was to involve writing

generated data sets to tape and then transferring the tapes

to the CYBER. Initially, attempts were made to write the

collected VAX data to tape and then read the data from tape

onto disk files on the CYBER. However, because of

difficulties encountered in getting the CYBER to read the

VAX generated tapes, data transfer was done by down loading

the data, via communication lines, to a microcomputer

0 diskette and in turn, transferring it to a CYBER disk file.

I-10

-

AFIT/GCS/EE/83D-4

CHAPTER II

MULTIVARIATE ANALYSIS TECHNIQUES

As stated in the introduction, the techniques studied

included multiple linear regression, canonical correlation

analysis, ridge regression, cluster analysis, factor

analysis and discriminant analysis. Based on results of

past applications, each technique is to some degree capable

of describing specific characteristics about

interrelationships that exist in a multivariate data set.

This chapter provides a brief discussion of the theoretical

*background and anticipated applications for each of the

techniques being studied.

Multiple Linear Regression

Multiple linear regression provides the analyst with a

means to investigate the strength and nature of

relationships among interval scaled variables. It allows

construction of a functional relationship between the

variables that can be used for explanative and predictive

purposes. Variables fall into two classes; criterion or

dependent variables, the variable for which a value is to

be predicted; and predictor or independent variables, those

variables used to do the prediction. The multiple linear

II-I

AFIT/GCS/EE/83D-4

regression model has the following form:

y Ib + b x +. + b x + e (1)
i 0 11 JJ i

In the model, y represents the value of the criterion
i

variable in the i-th of n cases. The b values representj
coefficients which indicate the proportional relationships

between the j-th independent variable and the criterion

variable. The error term e represents the difference
i

between the exact value of y and the predicted value of
i

y . Three statistical assumptions about the error termsi
allow the analyst to construct hypotheses based on the

derived model. These assumptions are: 1) the distributions

of the error terms are identical, 2) the error terms

themselves are independent, 3) the error terms are

distributed as a normal with mean zero and variance

(sigma-square).

Should a multiple linear regression model exist for a

given population, the values of the coefficients can be

estimated. The most widely used method for estimating the

coefficients of the model is the least squares technique.

The objective in using least squares is to find coefficient

estimates which minimize the sum of squared differences

between the observed values of the criterion variable, y ,

~iand predicted values of the criterion variable y in

matrix terms the estimated model becomes:

11-2

- 7 *.. 3'r

AFIT/GCS/EE/83D-4

YS - X * B' + el (2)

Where y' is an n element column vector, B' is a k + 1

element column vector and X is an n x k+l matrix of

variable values.

Proper use of the multiple linear regression model

requires that four major assumptions be met.

1. The variance of e must be constant for all cases
i

in the model. Violation of this assumption is

called hetereoscedasticity, and results in

unreliable tests of the null hypothesis that all

* coefficients are equal to zero.

2. The error terms must be independent. Violation of

this assumption is called autocorrelation, and

again results in unreliable inference tests on the

coefficients.

3. The error terms must be normally distributed about

the n-dimensional hyperspace represented by the

model.

4. All independent variables must be independent of

each other. Dependence among independent variables

is called multicollinearity and results in unstable

regression coefficients.

All of the conditions which result from violation of

11-3

, * * . * e . - .

M- -JZALCMsanw- '.- -- -% - ' -% ' - - .- *- .

AFIT/GCS/EE/83D-4

the above assumptions result in unreliable inference tests

on the coefficients which have been determined using the

least squares technique.

Ridge Regression

In regression models built from real world data it is

likely that some of the independent variables will be

related. Thus, multicollinearity will exist to some degree.

Ridge regression is a variation of the ordinary least

squares regression which attempts to negate the effects of

multicollinearity by decreasing the variance associated

with each coefficient. This regression technique uses

biasing in the calculation of the regression coefficients

to compensate for the interrelationships that exist between

the independent variables.

The ridge regression algorithm solves for a vector of

coefficients using the following equation:

* -1

b * (X'X + kW) X'XY (3)

X represents the standardized data matrix and k is the

bias value which is incremented in discrete steps over a

succession of iterations to produce a better set of

estimated coefficients.

The output of the ridge regression algorithm used in

this study included normalized and unnormalized estimated

II-4

'AFIT/GCS/EE/83D-4

coefficients, a graphical "ridge trace," and variance

inflation factors (VIFs), for each value of k. The ridge

trace depicts graphically the stabilization of the

calculated coefficients as the value of the bias term, k,

increases. VIFs are the diagonal elements of the inverse

X'X matrix and provide a measure of multicollinearity. VIFs

are calculated using (Ref 9:124):

VIF - 1/(l - r) (with k=O,see Eq 3) (4)
i 2

R is the multiple correlation coefficient between the

given dependent variable and all other independent

variables.

Ridge regression output from the program used in this

study provided values of k that render improved

coefficients. The selection of the best value of k may be

based on certain heuristics. Common non-graphical

heuristics are 1) all VIFs less than 10, and 2) all

improper signs changed. Regardless of the heuristic used,

the objective will be to choose as small a value of k as

possible, thereby minimizing the amount of bias introduced

into the calculations. The most popular graphical technique

for selecting k values is examination of the ridge trace.

In this case the value of k is chosen such that the values

are fairly stable (not changing rapidly).

11-5

AFIT/GCS/EE/83D-4

-.. Canonical Correlation

In analyzing multivariate data it may be required to

examine relationships between selected sets of variables.

Canonical correlation is a multivariate analysis technique

which enables the analyst to examine variables which are

themselves described by two or more variables. The

technique involves the derivation of a canonical variate

for each set of variables such that the correlation between

the sets is maximized.

The method is designed for use not only when the

independent variables take a linear additive form, but also

where there may be a set of two or more dependent variables

in linear additive form. The method, however, assumes that

the two sets of variables are distinct. Canonical

correlation is therefore applied in the situation where in

addition to the set of variables which serve as predictors,

a set of variables exist which serve as criteria. The

objective, as stated earlier is to build a linear model

between these two sets of variables, where the coefficents

in both sets are to be determined on the basis of obtaining

the maximum correlation between the two sets of variables.

In the analysis, one would effectively have compound!* *

independent and dependent variables X and Y described by:

X b x + b x +... +bx (5)
11 22 kk

11-6 •

' > *..' '- - ' >>i . ' %'-'v% " v-t.. '- .. %-""-i '

AFIT/GCS/EE/83D-4

Y a y + a y + ... + a y (6)
1 1 22 pp

In performing the canonical correlation analysis it is

the a s and b s that must be found simultaneously so that
ii * *

the correlation between X and Y (referred to as super

variables) is maximized (Ref 14:Ch 5). The resulting

correlation is termed the canonical correlation.

Factor Analysis

When the analyst is faced with a data set containing

many variables, analysis of variable relationships using

regression techniques may be hampered by strong

inter-variable relationships that exist in the data set. As

stated in the section on regression, existence of

multicollinearity causes poor regression coefficient

estimation and thus reduces the explanatory powir of the

regression model. Factor analysis provides a means for the

analyst to effectively reduce the dimensionality of the

data set while simultaneously deriving a set of truly

independent factors which represent the original set of

variables. The computational procedure involved in

performing factor analysis is:

1. Find all eigenvalues of the k x k matrix X'X (where

X is the n x p data matrix) and arrange in order of

magnitude so that lambda represents the largest
~J

eigenvalue.

II-7

i} ' , % % % %% ' . ' ''--.-..- ,., , ,.--....-... €-..- - .

AFIT/GCS/EE/83D-4

2. Find the normalized eigenvector associated with

each eigenvalue. These eigenvectors can be

arranged in a k x k matrix denoted A. Each

column in A is denoted a so that a is

associated with lambda The A matrix is the

factor pattern.
th

3.'The fraction of variance explained by the j

component is determined from lambda and the
j

cumulative fraction of variance calculated by

summing these values (Ref 14:Ch 6).

In a broad sense, factor analysis is a method for

reformulating a set of observed independent variables into

a new set (usually fewer in number, but never more in

number) of independent variables, such that the latter set

has certain desired properties specified by the analyst

(Ref 17:237-260). Two commonly used factor analysis

techniques are principal component analysis and classical

factor analysis. Principal component analysis is the search

through data to find factors or components that may reduce

the dimensions of variation and assign possible theoretical

meaning. On the other hand, classical factor analysis

starts with the hypothesis of a model and tests it against

the data to see if it fits (Ref 14:Ch 6).

11-8

AFIT/GCS/EE/83D-4

Discriminant Analysis

When studying multivariate data, the requirement may

exist to determine whether or not differences exist between

groups within a multivariate population. In this situation

the analyst may want to classify observations in the

multivariate population into two or more distinct groups

based on measureable differences. Typical questions asked

include:

1) Are the two groups significantly different with

respect to their multivariate descriptions?

2) What role do the variables for which measurements

have been obtained play in separating the groups?

3) If levels for the variables are known for a new

observation, to which group does the case belong?

The questions show that a full discriminant analysis

will actually consist of three sub-analyses of the

multivariate population. One step will involve the attempt

to discriminate between groups in a population. The second

step involves determining whether or not an inter-group

difference really exists within the population. Finally,

the third step involves an attempt to classify new

observations into the derived groups of the population.

Cluster Analysis

In multivariate data where relationships exist between the

variables, it is possible and at times desirable to group

variables based on these relationships for exploratory

-• "I -9

AFIT/GCS/EE/83D-4

. . purposes. Cluster analysis provides the analyst with

capability to perform this type of grouping. The term

cluster analysis actually refers to a variety of methods

for grouping data by observation. All of the methods use

some measure of similarity and can be described as either

hierachical or non-hierarchical. Clustering algorithms

exist which allow clustering of either variables,

observations, or both. Common measures of similarity

between objects include the Euclidean distance, or

Mahalanobis distance as distance metrics and the

product-moment correlation as a shape metric (Ref 2: Ch 1).

Clustering performed with a hierarchical algorithm will

start with all variables in one cluster and through an

0 iterative process, break the variables into smaller and

smaller clusters based on a specified similarity measure.

The iteration continues until each variable is in a cluster

of its own or a specified number of clusters has been

reached. Because of the computations required to compute

the similarity measures for each variable in each

iteration, implemented hierarchical algorithms usually

require extensive processing resources (memory and cpu)for

large data sets. On the other hand, non-hierarchical

clustering techniques are less demanding of computer

II-10

., ., '< .~. * a-

•V , a , - - -- $. -- -. . .

' - -... Li, . : , '= . . . -- - -. - . - - - . ' .*?.- .p' .-

AFIT/GCS/EE/83D-4

resources and initially consider each variable or

observation as being in a cluster of its own. Through what

" is usually a stepwise process, variables or observations

are then clustered based on a specific similarity measure

(Ref 2:Ch 7,8,9).

Differences in derived clusters can be evaluated based

on the already mentioned similarity measures or by use of

analysis of variance (ANOVA). Studies of how well collected

performance data reflects changes in system activity due to

altered performance parameters provide a possible CPE

application for cluster analysis (Ref 8). Whether or not a

hierarchical or non-hierarchical clustering technique is

used will in most cases be determined by the nature of the

data set being analyzed. If the data consists of variables

which measure separate but related system activities (i.e.

for a given job, the cpu utilization, memory required,

memory used, number of disk I/Os) then a hierarchical

technique could be used to examine how these variables

cluster for a given set of jobs. This in turn may provide

insight into the relationship specific jobs have to

measured performance and workload parameters. However, if

variables in the data reflect joint activity (i.e.

concurrent cpu, memory and disk activity obtained from a

software or hardware monitor) a non-hierarchical technique

could be used to observe how observations across a spectrum

of system activity would cluster. If the data could then be

% II-Ii

AFIT/GCS/EE/83D-4

related to some aspect of the systems processing

environment such as a specific type of processing (i.e.

simulations or text formatting), the derived clusters of

observations (or cases) may provide insight into the

*workload being generated by a specific type of processing.

While the above uses of clustering in CPE are

possible, the nature of clustering provides the analyst

with essentially a non-restrictive tool for examining

relationships between variables and observations. Thus, of

all the techniques being examined, cluster analysis would

give the analyst the most flexibility in application and in

interpreting the results.

.1

. ..#. .,,'

APIT/GCS/EE/83D-4

CHAPTER III

EXPERIMENTAL DESIGN CONSIDERATIONS

The study of the application and use of the

multivariate techniques for CPE purposes required a four

phased experimental design. The first phase consisted of

familiarization with system architecture and operation.

Results of this phase are presented in detail in Appendix

A. The second phase involved a review of possible sources

of workload and performance data. The third phase consisted

of collecting workload and performance data using selected

0 software monitors and accounting data, and preparing the

collected data into data sets suitable for multivariate

analysis. The fourth phase consisted of application of the

multivariate techniques and analysis of the results. With

the exception of phases one and four, actions taken and

results for each phase are discussed in this chapter. Also,

as an extension to the discussion of system familiarization

presented in Appendix A, a section on the current system

workload is presented in this chapter. While overall

analysis objectives for each of the multivariate techniques

will be discussed in general, specific objectives of

application and results are presented in subsequent

chapters.

Iti-1

AFIT/GCS/EE/83D-4

Current System Workload

The AFIT VAX 11/780 Scientific Support Computer (SSC)

is faced with a very dynamic workload environment.

Initially, the intended uses for the SSC included primarily

scientific/engineering applications, such as general

applications programming, simulation, mathematical and

statistical analysis, and advanced data base applications.

However, until a policy change which took effect during the

course of this study, the SSC workload also included a

significant amount of text formatting used for preparing

papers and audiovisual aids. While graphics capabilities

were also intended initially, heavy use of the SSC for

graphics processing also represented a significant portion

of the workload. Figure III-i shows the relative sizes of

components which make up a typical SSC workload.

Over the course of a year, quarter, week or day the

degree to which any of the above types of processing

contributed to the overall system workload was not

constant. The academic environment which the SSC supports

is primarily responsible for the highly varying workload.

Based on observation, yearly workload tends to be greater

during winter, spring, and summer quarters. Quarterly

workload rose and fell with class project due dates which

resulted in heavier workloads near weeks five and ten.

111-2

.A'* "- . %-" -" " -

AFIT/GCS/EE/83D-4

GENERAL SCIEKFIFIVfENGINERING APPLICATIONS
-Applications Programming (pc, £77, cc)
- Mathewatical/Statistical Analysis (s)

-Data Base Applications (ingfess)

Text Formatting and
Word Processing
(when used regularly)

Anroff
troff
spell Editors System - Simulation

- vi Related (when used regularly)
- ed Processing -Slam
- sed - Memory Management
- emc - Process Control

- Spooler

'- Figure III-I Typical SSC Workload Components

111-3

*1 e . ' ' " " ' _ '.o ' ' - " - .- ' ' - " " ' .' -. *.,.-. . ' ' ' ' % .-. .--.-. , '% % ' - "%

AFIT/GCS/EE/83D-4

Weekly workload was greatest during prime duty hours

(0800-1700) and in some cases early evening hours

(1800-2200). While these relative trends in periodic

workload show an aspect of the high variability in SSC

processing environment, it must be stressed that at any

given time, components of the workload will usually not be

the same.

At the time this study was being conducted it was

apparent that certain workloads resulted in significant

degradation of system performance. Thus, from a performance

evaluation viewpoint, a system bottleneck did exist and a

goal of the analyses to be conducted was to identify, if

possible, the causes of the bottleneck and present possible

0 solutions. However, bottleneck detection and performance

improvement were not the primary objectives of this

research and these issues were only handled to the degree

that the multivariate analysis techniques allowed.

Phase Two - Data Sources

The SSC runs Berkeley UNIX Version 4.1 and comes

equipped with a number of software monitors and accounting

routines. A detailed discussion of the primary routines and

monitors available is presented in Appendix B. For the

purposes of this study, three software monitors were used

in addition to selected data from the system accounting

file to form a multivariate data set, which represented

111-4

AFIT/GCS/EE/83D-4

overall system activity. The software monitors used

included:

1. 'vmstat' - an interval driven monitor which

samples virtual memory, disk and cpu activity.

2. 'ps' - a system command which can be used in a

loop to provide periodic data on current process table

entries. PS was used in conjunction with 'wc' (a counting

utility) to provide a count of all (logged in users)

processes.

3. 'df' - a system command which when used in a loop

can provide periodic disk/file system utilization data.

The monitors used are summarized in Table III-1.

0 Table III-1

Software Monitor Description

MONITOR FUNCTION

vmstat -- interval driven monitor which reports

overall system activity.

ps -- process status monitor which reports

disposition of process current being

executed on the system.

* df disk utilization monitor which re-

ports utilizations for all mounted

file systems (real and logical).

111-5

AFIT/GCS/EE/83D-4

Vmstat provided the most comprehensive view of system

activity. Vmstat output includes twenty-two items of

sampled system activity which together form a useful set of

workload measures. Some of the items, such as the number of

runnable processes, anticipated short-term memory short

fall, and pages scanned by clock algorithm per second are

also indirect measures of performance because increases in

these items indicate that the system is not performing at a

level necessary to handle its current workload.

The accounting data used was taken from the system

activity accounting file /usr/acct. Included was summary

data on executed processes execution time, cpu operation,

I/O activity and memory usage. Also extracted were counts

of selected commands that were processed to characterize

the workload by the types of processes being run. Monitored

commands were grouped into fifteen categories which

represented specific types of processing. Finally, the

*average total execution time required for the 'date'

command was extracted to be used as a benchmark for a

response time indicator. Ideally, the time required to

execute the 'date' command should be less than .3 seconds.

Thus, increases in execution time for the command provided

an indication of degraded performance. The data items which

made up the composite data file were selected because

together they provided a combination of workload measures

: .t:. which would allow different aspects of system performnce to

fII-6

z-..

AFIT/GCS/EE/83D-4

N be analyzed.

Phase Three - Data Collection and Preparation

Once the data sources were selected, data collection

and preparation routines were developed. For data

collection, UNIX scripts (executable files of UNIX

commands) were used and executed beginning at midnight

using the UNIX 'at' utility. The software monitor routines

were initiated and ran for a 24-hour period while

initiation of the accounting data collection routines

extracted the previous 24-hour period entries in the system

accounting file.

Software monitors were run at 5-second interval

sampling rates with collected data being appended to a data

file every five minutes. Because of the high sampling rate,

software monitor data files grew to over 2 megabytes within

the 24-hour monitoring period. To avoid filling the /usr

file system, data files were dumped to tape each day. Also

dumped were the raw accounting data files which had been

extracted from the system accounting file.

Once monitor and accounting data files had been

collected, preparation of data sets primarily involved

reduction of the voluminous monitor data files and

summarization and extraction of the raw accounting data

file. Collected data was summarized into forty-eight

30-minute intervals which covered a midnight to midnight

111-7

W I. qt

AFIT/GCS/EE/83D-4

Speriod for each day that data was collected. These

intervals represented a 30-minute summary of system

activity and were designated as performance summary

intervals (PSI). Throughout this report the terms 'PSI' and

data set 'case' will be used interchangeably.

The 'awk' report generator and data manipulation

utility, and 'sed' stream editor were used to reduce the

monitor data, and the 'sa' accounting data summary routine

was used to summarize raw accounting data. For the monitor

data, reduction primarily involved computing means for

monitored activities and writing all means for a given psi

to a file. Based on selected options, the 'sa' routine

summarized all entries made in the system accounting file

for a specified interval. Summarized data included average

and per-process cpu utilization; average and per-process

memory use (averaged by the amount of cpu time used); and

process statistics. After summarization, the three reduced

monitor data files and three files created from data

extracted from the summarized accounting file were combined

into a composite data file. The resulting file contained

forty-eight entries or cases for each day on which data was

collected. Each case represented one summarized 30-minute

period of system activity. As stated above, the cases

(PSIs) each contained fifty-two items of data. At the end

of this chapter is a breakdown of the data items contained

in each case. Data items are numbered (1 through 52) and

111-8

AFIT/GCS/EE/83D-4

named (in paretheses) the way they would appear in the

composite data set.

Application of Multivariate Techniques

The overall approach used in applying the techniques

involved singly applying each technique to the prepared

data set. From a CPE standpoint, the techniques were

applied to the data set with the primary goal of revealing

dependencies, interdependencies and group-wise

relationships among variables in the data set. The types of

models which are derived in multivariate analysis are best

used in revealing and possibly explaining various types of

variable relationships within a multivariate data set.

Thus, application of the techniques generally followed a

pattern in which 1) objectives were stated for application

of the technique, 2) the technique was then applied, 3)

statistical considerations were then examined for obtained

results and 4) based on statistical significance of the

results, the relationships revealed in the derived model

were examined for theoretical validity with respect to

workload and performance measures represented by the data

set variables.

Because the software monitors and accounting data used

in constructing the data set provided system oriented

rather than job oriented performance data, the prepared

data set lent itself well to the type of exploratory

III-9

j AFIT/GCS/EE/83D-4

analysis available from the multivariate techniques. Each

case in the data set is a 52-variable observation. Thus it

would even be difficult for a VAX/UNIX expert to discover,

analyze and explain why specific relationships exist among

measured variables. However, having exposed relationships

in the multivariate data set via use of multivariate

analysis techniques, existing relationships and their

significance can more easily be identified, and possibly

explained.

Ill-10

AFIT/GCS/EE/8 3D-4

The following table contains a list of the data items

(variables) which made up each case (performance summary

interval-PSI) in the prepared data sets. Also given is the

column number associated with each of the variables.

-I .-.* 7 W .

AFIT/GCS/EE/83D-4

Table 111-2

Data Set Variable List

fin ~ --- --- -nnnn. n nnf..n.nlll--------- ------ _-------

columns(l-22) = vmstat data

col # monitored activity

*case number cases were numbered from 1 to n to allow
easier visual inspection of the data set.

1-casenum sequence number beginning at 1, given to
each case (psi) in the data set.

*case id label showing day,month and the 30 minute
period measured.

2-(per)
*procs information about numbers of processes in

various states.
3-(r) number of processes in run queue
4-(b) number of processes blocked for resources

(i/o,paging etc.).
5-(w) runnable or short sleeper (< 20 secs) but

swapped.
*memory information about virtual and real memory

usage.
6-(avm) active virtual pages
7-(fre) size of free list
*page information about page faults and paging

activity
8-(re) page reclaims
9-(at)

lO-(pi) pages paged in
ll-(po) pages paged out
12-(fr) pages freed per second
13-(de) anticipated short term memory shortfall
14-(sr) pages scanned by clock algorithm,per-second
*disk information about disk activity
15-(hO) disk operations per-second for hO
16-(hl) disk operations per-second for hi
17-x2) NO DISK IN USE
18-x3) NO DISK IN USE

111-12

AFIT/GCS/EE/83D-4

*faults trap/interrupt rate averages/sec over last
five seconds.

19-(in) (non clock) device interrupts per-second
20-(sycl) system calls per second
21-(csw) cpu context switch rate (switches/sec)

*cpu breakdown of percentage usage of cpu time
22-(cpusr) user time for normal and low priority

processes
23-(cpsys) system time
24-(cpidl) cpu idle

column (25) - bench mark data

25-(bnchmk) real time (approx. resp. time) required
to execute 'date' command

column (26) = user process information

26-(nuprocs) average number of logged in user processes
for 30 min period

columns (26-31) - disk utilization data

27-(rootfs) % use for logical disk /dev/hpOa
(total blks - 7623)

28-(usrfs) % use for logical disk /dev/hp0h
(total blks - 141545)

29-(lsfs) % use for logical disk /dev/hplg
(total blks - 76123)

30-(enfs) % use for logical disk /dev/hplh
(total blks - 141578)

31-(ulfs) % use for logical disk /dev/hpOe
(total blks - 26848)

32-(tmfs) % use for logical disk /dev/hpOd
(total blks - 7317)

columns (32-37) - accounting summary data

33-(exprocs) number of executed processes
34-(realt) average real time taken for each

process
35-(cpuusac) average amount of time cpu spent in

user mode
36-(cpsusac) average amount of time cpu spent in

system mode
37-(avioac) average number of ios executed
38-(kac) average number of memory blocks used

over cpu time

111-13

-. , .-. ...--.-.- , , . ,. ,.,.. , .'. t ,.*. .

APIT/GCS/EE/83D-4

ZY

columns (38-52) - counts for monitored command

39-(troff) number of processes related to troff and
vtroff processing

40-(nroff) number of processes related ot nroff
processing

41-(karel) number of processes related to karel
execution

42-(f77) number of processes related to fortran
compilations

43-(vers) number of processes related to versatec/
spooler processing

44-(edits) number of processes related to editor
processing

45-(cc) number of processes related to C
compilations

46-(slam) number of processes related to slam
execution

47-(pi) number of processes related to pascal
compilations (interp)

48-(pc) number of processes related to pascal
compilations (compiler)

49-(swmons) number of processes related to software
monitor execution

50-(saproc) number of processes related to accounting
file processing

51-(Srun) number of processes related to S statis-
tical processing

52-(yaclex) number of processes related to lexigraph/
compiler processing

53-(utils) number of processes related to commonly
UNIX used utilities

- -- ---

111-14

-..* e.A ..*. ..4 ." ,. ..4 . .

AFIT/GCS/EE/83D-4

CHAPTER IV

REGRESSION ANALYSIS

Part 1 - Ordinary Least Squares

Analysis Objective

In performing regression analysis on the system

performance data, the primary objective was to derive a set

of explanative/predictive empirical workload and

performance measurement models for the AFIT SSC. Workload

parameters of interest include CPU-utilization in both the

0 user (cpusr) and system (cpsys) modes, and average size of

the process run queue (rung). The primary performance

measure of interest was response time, because it indicated

how well the system was handling its current workload. The

data set used provided direct measures of cpu utilization

and run queue size. However, approximations had to be made

for the response time. Two data set items were used to

model response time. The first was 'real' execution time

(bnchmrk) required for the "date" command, which performs

the necessary calculations and table look up to provide the

user with the correct day, date, month, time, year and time

zone based on a 0000 1 January 1970 epoch. This measure was

used to indicate response time for a given period of

IV-1

AFIT/GCS/EE/83D-4

system activity. The second approximation for response time

was taken from the system accounting files. Among the

accounting data is average 'real' execution time taken by

all processes run over a given time period (realt). This

measure is not as good as single-command measure of

response time because over a given interval the processes

executed could vary extensively in the amount of time taken

for execution. Thus, this measure only gives a very general

indication of what response time may have been and is

dependent on the types of processes being run for the

measured interval.

After the models were established, the cpu-user mode

utilization model was further examined to see if it was the

same for each day in the three day period covered. To do

this a general linear test (GLT) was performed. The

composite data matrix was split into matrices that

represented each of the three days. Regressions were then

performed using each days data to obtain the anova results

necessary to compute the full model SSE. When performing a

GLT, the reduced model is the one built using the entire

data matrix. Then using the assumption that,

"SSE - SSE + SSE + SSE ' (7)
full 1 2 3

and

"df =df + df + df" (8)
full 1 2 3

IV-2

AFIT/GCS/EE/83D-4

the F statistic was computed using,

SSE - SSE
reduced full

df - df
reduced full

(9)
F/

F= SSE /df
full full

Analysis Tools

This part of the regression analysis was performed

using the 'S' data analysis/manipulation package available

on the AFIT SSC. S provided many lower level data

manipulation capabilities not available in SPSS or BMDP.

*(Ref 22).

Analysis Results

0The first portion of the regression analysis project

entailed using the S 'cor' function to produce a 51x51

correlation matrix of all variables used in the data set.

The matrix was then examined to determine inter-variable

correlations. Based on this visual inspection of the data,

independent variables which had correlations of r > .6 with

selected dependent variables were chosen.

Using the regression by 'leaps and bounds' technique

available in S, all-way regressions were run for each of

the possible subset sizes 1 through n, where n is the

number of independent variables used in the regression. The

results of the 'leaps' procedure provides either the Cp

criterion, R-square, or the adjusted R-square as model

IV-3

.4

AFIT/GCS/EE/83D-4

comparison measures. Using the Cp statistic which is

concerned with the total squared error of the n fitted

observations for any given model, four models were selected

from the leaps results for each of the dependent variables

being examined. For the dependent variables being modeled,

the models rendering the lowest Cp statistic were:

(explanations of variable names are given in Chapter III)

cpusr = 204.6433 - 0.0243fre - 5.0979pi + .9099h0

+ 2.5776hl - 1.56847usrfs

cpsys = 3.7825 - (0.1238e-2)fre + 2.7304pi - 2.3511po

- 3.1971fr + 5.5214de - 0.1506sr

+ 0.1611h0 + 0.3983h1 + 0.1022in

- (0.1045e-2)sycl + (0.4808e-l)csw

+ (0.4804e-l)nups + (0.3229e-2)exps

+ (0.1917e-l)f77

bnchmrk - 1.0381e2 - (3.3162e-4)avm - (2.0474e-3)fre

+ (9.5810e-2)hl - (9.9347e-l)cpusr

- 1.0383cpsys

realt - 47.4816 - 0.7507r - (0.8413e-3)avm + 1.8493re

- (9.4303)po + 2.5419fr + 1.354troff

IV-4

-- ~~~~~~~~~~~ 'ZV *&t% Z. C %'.%% $'% .~.A..#;f... ~.

AFIT/GCS/EE/83D-4

runq : -.4747 - 42.4565w + (0.2749e-2)avm - 2.6134pi

+ 0.4643sr + .3258h0 - 0.0937in

+ 0.0522csw

Regression results are shown in Table IV-l at the end

of part 1 of this chapter. Each of the selected models were

examined for violations of regression model assumptions.

This was done using residual analysis and examination of

the coefficient correlation matrix for each regression.

Residual normality(N), heteroscedascticity(H) and

autocorrelation(A) were checked by using plots of the error

terms versus 0, y, and time. The plots revealed the

following for each derived model:

cpusr model

N -- > VALUES EVENLY DISTRIBUTED ABOUT 0

H--> EVIDENCE OF POSITIVE CORRELATION WITH Y VALUES

A--> NO CYCLIC PATTERNS OVER TIME

cpsys model

N -- > VALUES EVENLY DISTRIBUTED ABOUT 0

H -- > NO VISUAL CORRELATION WITH Y-HAT VALUES

I A -- > NO CYCLIC PATTERNS OVER TIME

IV-5

AFIT/GCS/EE/83D-4

bnchmrk model

N -- > APPEARS TO HAVE BIMODAL DISTRIBUTION ABOUT ZERO

H -- > SHOWS EXPANDING FUNNEL PATTERN WITH INCREASING Y

VALUES

A -- > POSSIBLE CYCLIC PATTERNS AT 0,50,100 INTERVALS

realt model

N -- > EVENLY DISTRIBUTED ABOUT 0, POSSIBLE OUTLIER

H -- > STRONG POSITIVE CORRELATION WITH Y VALUES

A -- > NO CYCLIC PATTERNS OVER TIME

runq model

N -- > EVENLY DISTRIBUTED ABOUT 0

H -- > SLIGHT POSITIVE CORRELATION WITH Y VALUES

A -- > NO CYCLIC PATTERN OVER TIME

Examination of the coefficient correlation matrices

revealed the following multicollinearity problems among the

independent variables:

cpusr model: .6817 correlation between 'fre' and 'hl'.

IV-6

i e -eZ e. Z r Z. r e

AFIT/GCS/EE/83D-4

-. cpsys model: .5424 correlation between 'in' and 'fre'

-.6538 correlation between 'fr' and 'pi'

-.6785 correlation between 'fr' and 'po'
-.5077 correlation between 'in' and 'h0'

-.6891 correlation between 'h' and 'csw'

-.6051 correlation between 'in' and 'hl'

bnchrmk model: -.5944 correlation between 'fre' and 'hl'

.5605 correlation between cpsys' and

'fre'

realt model: -.5619 correlation between 'fr' and 're'

-.8021 correlation between 'fr' and 'troff'0
rung model: -.5492 correlation between 'avm' and 'sr'

-.5563 correlation between 'sr' and 'pi'

As shown above only correlations above .500 were

identified as being problems. While the pair wise

comparison rendered the above results for single order

interaction, no checks were made for higher order

interactions. Higher order interactions, which could also

exist, are those in which combinations of two or more

independent variables are correlated with one or more of

the other independent variables. The cases of

multicollinearity that do exist all convey the actual

IV-7

.5'.M

AFIT/GCS/EE/83D-4

relationships of the independent variables involved. For

example, the correlations between the fr, sr, re, sr, pi,

and po variables exist because these variables all

represent various forms of paging activity.

To test whether or not the model developed for cpusr'

applied to each of the 3 days for which data were

collected, a general linear test was performed. Results of

the test revealed the following:

Null Hypothesis: Corresponding coefficients for each

independent variable in the models

for each day are equal.

Alternate Hypothesis: At least one set of

corresponding coefficients are

not equal.

Using the Eq 9, the calculated F statistic was 3.98 with
6 and 125 degrees of freedom. With the degrees of

freedom given the critical value is 2.10. Thus, the null

hypothesis can not be accepted and it must be concluded

that at least 2 of the models from the 3 day period are

significantly different (at O(- .05) from the composite

model.

IV-8

AFIT/GCS/EE/83D-4

Analysis of Results

Results of the regression analysis rendered models

that all presented an intuitive feel for how various system

activities were related to each other. For example, the

'runq' model indicates that size of the process run queue

is dependent upon the number of swapped processes, amount

of memory being used, paging and disk activity, and the

number of device interrupts being processed by the cpu.

Thus, based on the signs of the coefficients one would

expect the process run queue to increase in size as memory

usage and disk activity increased and as, swapped

processes, paging activity, and device interrupts

decreased.

However, because of the problems that were revealed in

the residual analysis, all of the models must be further

developed before they can be used for reliable

interpretation. For example, in the models for 'bnchmrk'

and 'runq,' adding dummy variables to represent each of the

3 days or times of day (i.e. 0600-1200, 1200-1800, etc.)

could provide a possible solution to the apparent

autocorrelation problem.

Further Analysis

Regression models for the same dependent variables

IV-9

I Kb PA..% .53. -3 -i -1. -A-.A . * -

AFIT/GCS/EE/83D-4

were also derived using SPSS. In addition to those models

developed using S, active virtual memory use (avm) was also

modeled using SPSS. While the results were not exactly the

same the models developed were similar. The differences

appeared to be due to the fact that the step-wise variable

selection procedure used by SPSS and the regression by

leaps and bounds technique used by S used different

heuristics to decide which variable(s) to include next in

the model. Thus, some of the SPSS models consisted of

different variables. However, all highly significant

variables were present in models developed by both systems.

An attempt was made to perform a GLT using the SPSS

output, however, after eight significant variables in the

full data set had been chosen for examination, it was

discovered that four of them displayed extreme changes in

significance in data sets representing each day. Thus, the

GLT could not be performed with those variables selected.

The changes in the day to day significance were used as

basis for concluding that the models developed for the full

data set were significantly different from those developed

for each one day period. This conclusion provided further

indication that the performance and workload measures

modeled were time dependent at least over a weekly period.

The changes in significance could also be attributed in

part to the effects of multicollinearity on computed

regression coefficients.

I1

AFIT/GCS/EE/83D-4

REGRESSION RESULTS FROM S PROGRAM

Table IV-la

Cpu user-mode utilization model

ANOVA

SSR- 85625 dfR= 5 MSR= 17125

SSE- 26224.94 dfE= 137 MSE- 191.423

VAR COEF STD ERR T-VAL

int 204.643 33.272 6.151

fre -0.024 0.003 -7.238

p1 -5.098 1.113 -4.582

hO 0.909 0.314 2.894

hl 2.578 0.445 5.788

usrfs -1.568 0.361 -4.340

Residual Standard Error - 13.856

Multiple R-Square - 0.766

N - 143

F - 89.46 on 5, 137 df

IV-11

ilL hi %k 'ZM. ' -,'-' - % ." IS$ V " ' \ '' . I c ..

AF IT/GCS/FEE/8 3D-4

*~ Table IV-lb

Cpu system-mode utilization model

A NOV A

SSE- 253.464 dfE- 128 MSE- 1.98

VAR COEF STD ERR T-VAL

int 3.783 1.427 2.650

fre -0.001 0.001 -2.375

pi 2.730 0.394 6.922

po2.351 0.582 4.036

Er -3.179 0.539 -5.893

de 5.521 1.384 3.989

Csr -0.150 0.048 -3.163

hO 0.161 0.064 2.494

hl 0.398 0.057 6.980

in 0.102 0.017 5.948

syci -0.001 0.001 -1.674

csw 0.048 0.006 7.246

nups 0.048 0.013 3.689

exps 0.003 0.001 5.071

f77 0.019' 0.014 1.347

Residual Standard Error - 1.407 N - 143

Multiple R-Square -0.988 F - 730.91 on 14,128 df

* IV-12

AFIT/GCS/EE/83D-4

Table IV-lc

Benchmark Response Time Model

ANOVA

SSE- 97.4 dfE= 137 MSE- 0.71115

VAR COEF STD ERR T-VAL

int 1.04e2 0.851 122.0

avm -3.31e-4 0.001 -3.406

fre -2.04e-3 0.001 -6.518

hl 9.58e-2 0.033 2.912

cpusr -9.93e-1 0.005 -215.418

cpsys -1.03e0 0.018 -58.252

Residual Standard Error - 0.8433

Multiple R-Square - 0.999

N - 143

F - 56258.23 on 5, 137 df

IV-13

AFIT/GCS/EE/8 3D-4

* Table IV-ld

Average Real Time Response Time Model

A NOV A

SSE- 20434.07 dfE- 136 MSE= 150.251

-- -

VAR COEF STD ERR T-VAL

int 47.482 1.708 27.806

r 0.751 0.324 2.316

avm -0.001 0.001 -0.461

re 1.849 0.703 2.632

po -3.430 4.619 -2.042

fr 2.542 2.881 0.882

troff 1.354 0.479 2.823

Multiple R-Square - 0.326

N -143

F - 10.94 on 6, 136 df

IV-14

AFIT/GCS/EE/83D-4

Table IV-le

Process Run Queue Model

ANOVA

SSE- 398.87 dfE- 135 MSE= 2.955

--

VAR COEF STD ERR T-VAL

int -0.475 0.264 -1.795

w -42.457 25.071 -1.693

avm 0.003 0.001 10.117

pi -2.613 0.245 -10.678

sr 0.464 0.040 11.557

hO 0.326 0.076 4.277

in -0.094 0.014 -6.470

csw 0.052 0.006 8.442

Residual Standard Error - 1.7189

Multiple R-Square - 0.948

N - 143

F - 352.2 on 7, 135 df

IV-15

... 4

AFIT/GCS/EE/83D-4

Part 2 - Ridge Regression

Analysis Objective

As was evident in the application of ordinary least

squares regression in part one of this chapter, OLS

regression modeling can be adversely affected by violations

of required assumptions. One of those assumptions is that

the independent variables are not correlated with each

other. Violation of this assumption results in

multicollinearity and in extreme cases will render an ill

conditioned X'X matrix which cannot be inverted. Even when

multicollinearity is not extreme (r > .95), its presence at

moderate levels (.4< r <.7) will result in unstable

regression coefficients that do not accurately reflect the

independent variables relationship to the dependent

variable. A technique which attempts to adjust for

multicollinearity is ridge regression.

To examine the use of ridge regression, variables

selected by SPSS for the ordinary least squares (OLS)

regression model for active virtual memory use (avm) were

used. The ridge program used in this analyses limited the

total number of variables which could be used to sixteen.

The regression algorithm used in the ridge program also did

not allow for step wise inclusion of independent variables.

Instead, all variables available were included and the

computed regression coefficients were based on the initial

IV-16

AFIT/GCS/EE/83D-4

-- i

value of the (X'X) data matrix. Thus, the regression
coefficients computed were not exactly the same as those

computed by S or SPSS. As a result, the ridge models

developed could not be directly compared to those developed

using the other analysis tools. However, the ridge program

provided values for regression coefficients computed

without the addition of bias which provided its equivalent

to the OLS coefficients. These OLS coefficients were used

as the basis of comparison between models.

aThe first objective was to examine the ridge trace

generated by the ridge program. This would provide the

necessary indication of how much instability existed in the

repression coefficients. Based on the ridge trace the

decision could be made about the accuracy of the OLS model.

The second objective was to then examine the computed ridge

coefficients and determine which set of them would improve

the regression model. The selection of ridge coefficients

was based on the ridge trace and two heuristics which had

been used in past studies to select the best set of

coefficients.

The ridge program was run using a bias increment value

of .005 (k-.005). The program computed regression

coefficients for all values of k between 0 and .245. Also

provided were the correlation matrix, the ridge trace and

the Variance for Inflation Factors, (VIFS). The OLS model

coefficients were:

IV-17

-~~~~~~ ir t * *t* - - -

AFIT/GCS/EE/83D-4

+34.3r -155.Ob -12500.0w +175.Ofr

-4.81cpidl +30.5nuprocs -21.Ousrfs -53.lenfs

-43.Oulfs -36.8troff +4.05edits +41.3cc

+3.32pc -32.4srun +2.09utils

const - 16280.0

Examination of the correlation matrix, the ridge trace

and the VIFs revealed that these coefficients were highly

unstable due to the effects of multicollinearity betwen

independent variables. The independent variables exhibiting

significant multicollinearity (r>.5) were:

r fr troff

b cpidl edits

w usrfs utils

The ridge trace generated by the ridge program is

shown in Figure IV-2. The trace shows how each of the

coefficients varied with increasing values of k. The trace

revealed that coefficients for nuprocs(7), r(l), and w(3)

were the most unstable. While nuprocs and r showed high

rates of change in coefficient value, w's coefficient

eventually changed signs when a certain level of bias had

been reach. Coefficients which swing from negative to

positive usually do so because of the effects of

multicollinearity.

IV-18

AF IT/GCS/EE/8 3 D-4

.zCGE T ACE: NCUPALIZED CCEFFICIE'TS,C C. CEF 91C NT 4 Af, GE: -o12ii T",, £Io

63 88F * ED CG 7*
,o.5 6 3 OF . ED C 1 57 .9
*C13 6 238F o E 0 CG 5 1 7 oF65
o015 6 2 OF * E 0 CG 5 1 7 .9862
.02 6 2 9F * E C G 5 1 7 .9859
o325 6 2 9F * E 0 6 5 1 7 e9856
o033 6 2 9F * E 0 G 5 1. 7 *9-352
."o35 6 2 9F3. E 0 G 5 1 7 .0984
.Cfl#n 2 AF3 E C G 5 1 7 "3846
.045 6 2 AF3. E 0 G C 5 1 7 o9842
*350 6 2 AFB3 ED G C 5 1 7 o-783
0.155 .6 2 AFB3 ED 6 C! 1 7 o9935
0:6.3 6 2 AF83 EO G C 5 1 7 -9S32
eo165 6 2 AFSo3ED 6 C 5 1 e o9328
o 1Y , 6 2 AFB.3E0 G C 1 1 7 5
*r75 6 2 A Fo3ED 6 C 3 1 7 .9?21
or;. 6 2 A F.3E0 G C 5 i 7 09_18
oa5 6 2 A Fo3EC G C ! 1 7 09,94
033C 6 2 A F. ED C 5 1 7 o9a11
o95 6 2 A Fe 3E S C 5 1 7 e960'7
-133 L, 2 A FS 3E S C 5 1 7 o98 4
oi15 6 2 A FB 3E G C 7- 1 Ct98:c
o11: 6 2 A FO 3E S C5 1 7 Coefficients *97'7
0115 6 2 A FS E G C! 1 7 codes .9794
e123 6 2A FO E 6 C5 1 7 o9770
.125 6 2A FO E G C5 1 7 1- r e97S7
0 13-1 6 2A F8 E 6 C! 1 7 2- b o97 3
*135 6 2A FS E G C! 1 7 3- w o978
01 S 2A FO E G C5 1 7 4- avm (dep) .9777
.145 6 2A FS E G C! 1 7 5- fr .9773
0 1 5fA 6 2A Fe E G C5 1 7 6- cpidl *9774
.155 6 2A FB E3 G C5 1 7 7- nuprocs .9767
016" 6 2A FB E3 G C! 1 7 8- usrfs o9763
*165 6 2A FO E! 6 C! 1 7 9- enfs 99760
*17; S A98FB E1 6 CS 1 7 10- ulfs .97!7
*175 6 A9SF.B E3 6 C! 1 7 11- troff .9753
o191 6 A98FoB E3 6 C5 1 7 12- edits .97--1
,185 6 A98FP8 E' G C5 1 7 13- cc *9747
o 11n 6 A98Fo8 E3 6 C! 1 7 14- pc .9744
"195 6 A98F*B E3 G C! 1 7 IS- srun o9741
*200 6 A98FB E3 6 C! 1 7 16- utils a9737
02.5 6 A9SFoB E3 G CS 1 7 e9734
9210 6 A98FeB E 6 Cs 1 7 .9731
o215 6 A98FoB E 36 Cs 1 7 o9728
.22C 6 A98FoB E 3G C! 1 7 o.725
.225 6 A98F.B E 3G C! 1 7 *:722
9231 6 A9SFoB E 3G C5 1 7 o9741
.23. 6 A98F*8 E 36 CS 1 7 .716

.r .240 6 A98F*. E 3G Cs 1 7 .9712
.245 6 AgeF.8 E 3G CS 1 7 .97"9

IV-19

" '+ " " '+ ' €,< + " '+ ". v..v .* + ' *"* ~- * .. i: .-- ' .*-' : - "-.p- * *.'.': - ,* * . -... '.'

AFIT/GCS/EE/83D-4

Examination of the computed VIFs for the OLS model

showed that four of the variables (r, nuprocs, edits,

utils) had VIFs greater than 10, which indicates that these

variables were correlated with at least one other

independent variable at r > .9. Thus, based on these

observations, it was concluded that the explanatory value

of the OLS model for active virtual memory use was limited.

Since .005 was used as the increment value for k, 50

sets of regression coefficients were computed. Selection of

which set would provide the best model can not be based on

any fixed rule or algorithm. Rather, use of the ridge

trace, or selection heuristic or both must be incorporated

to select a coefficient subset. Use of the ridge trace is

the most common selection technique. This entails selecting

a value of k where all or most of the regression

coefficients have stabilized. Based on this method of

selection the following model was selected with bias being

k - .130:

avm -5054 + 51.4r - 166b + 5770w + 152fr

- 5.61cpidl + 15.7nuprocs

- 18usrfs - 8lenfs - 63.7ulfs

- 1.4troff + 7.57edits + 40.7cc

+ 3.93pc - 18.7srun + 2.03utils

Using the heuristic, all VIFs less than 10, a second

model was selected. This model, required a bias of

k - .110:

IV-20

AFIT/GCS/EE/83D-4

Model based on -- All VIFs less than 10

avm = -3624 + 52.2r - 179b + 4580w + 154fr

- 5.68cpidl + 16.4nuprocs

- 18.3usrfs - 82.4enfs - 61.3ulfs

- 3.90troff - 7.46edits + 41.0cc

+ 3.82pc - 20.4srun + 2.05utils

A final model was selected using the heuristic -- all

signs correct. Coefficients were chosen at the k value

where all negative coefficients, which intuitively should

have been positive, had transitioned from negative to

positive. The variables which had coefficients that changed

sign were w and troff. The model selected using

signs-correct heuristic required a bias of k = .145:

Model based on -- All signs correct

avm = -5961 + 50.8r - 156b + 6530w + 151fr

- 5.55cpidl + 15.3nuprocs

- 17.8usrfs - 79.9enfs - 65.3ulfs

+ .272troff - 7.63edits + 40.4cc

+ 4.01pc - 17.5srun + 2.02utils

Examination of the unnormalized regression

coefficients in the models presented showed how they varied

with increased bias. However, it was necessary to examine

the normalized coefficients to determine how the

explanatory power of the model was effected by the bias.

Based on the OLS normalized coefficients, active virtual

memory use was most strongly affected by the number of user

IV-21

AFIT/GCS/EE/83D-4

"' .processes that were currently running on the system. With a
C "" normalized coefficient of .618, interpretation using the

OLS model would identify 'nuprocs' as the most significant

variable in determining 'avm.' However, the normalized

ridge coefficients at k = .145, showed that the size of the

process run queue and the number of editor processes were

significant variables in determining 'avm.'

At the .145 bias level, the coefficient for 'nuprocs'

* had dropped to .310 while the coefficient for 'runq' had

increased from .149 to .221, and 'edits' had increased from

.068 to .127. These changes in coefficient size are made

evident in the ridge trace, which graphically depicts the

effect of increasing bias on the size of the coefficients.

0Thus, as anticipated, use of ridge provided more stable

coefficients and consequently enabled more accurate

explanations of the relative importance of the independent

variables.

To evaluate the effect of the added bias on the

predictivity and significance of the models, an S program

was developed to compute the SSE for each model. The SSE
2

was then used along with the R value computed in the ridge

program to compute an overall F value for the model.

IV-22

. .

, " -- . %- .o-% .g. ..- - . •.-.- -. .. .- . ,- .- - -.. . . ., S

AFIT/GCS/EE/83D-4

2
Table IV-l shows R versus k for each of the

2
developed models. As shown the R value decreased as

bias was increased, however, the computed overall

F-statistic obtained from the S program output remained

significant at - .05 for each model. Thus, the
2

injected bias resulted in a slight decrease in the R for

the model but the model still remained significant. The

model selected using the heuristic -- all signs correct,
2

had the highest bias but still had an R of .9773, a
2

decrease of .0096 from the OLS model R . The small
2

decrease in R indicates that the predictivity of the

model was not adversely affected by the added bias.

Table IV-2

PComparison of 'arm' models
2

Model Bias R

OLS 0.0 .9869

VIFs < 10 0.110 .9797

Trace 0.130 .9783

Signs 0.145 .9773

Conclusion

The OLS regressions performed in this chapter reveal

the value of this data analysis technique as a modeling

tool to the CPE analyst. However, when regression is used

for explanative applications, the data used to build the

IV-23

AFIT/GCS/EE/83D-4

models and the resulting residuals must meet the required

'A~ independence and normality assumptions. Ridge regression

provides an alternative to the OLS regression which

effectively negates the effects of multicollinearity.

Though the ridge models had biased coefficients, the

overall significance and the predictive capability of the

models were not greatly reduced. Thus the CPE analyst can

use ridge regression to improve the explanatory power of

models which are developed from data exhibiting

multicollinearity. Because computer system performance

data, in many cases, exhibits strong inter-relationships,

ridge regression would be a useful tool if the CPE analyst

wanted to use the data to build explanatory models.

IV-24

. '.- v V' .-; ' % v* "

AFIT/GCS/EE/83D-4

61 CHAPTER V

CANONICAL CORRELATION ANALYSIS

Analysis Objective

In some data analysis situations it may be more

advantageous to examine relationships between groups of

variables. The question posed would be whether or not a

significant relationship exists between two sets of

variables. Based on the existence or non-existence of this

relationship, hypotheses can be formed about why the

relationship does or does not exist. If a relationship does

* exist then further hypotheses can be made about the

strength of the relationship. Though some of these

hypotheses may not be statistically testable, they can

provide the CPE analyst with insight into the underlying

structure of collected CPE data and consequently may lead

to revelations of causal relationships between system

activities. Canonical correlation provides the analyst with

a means to examine the strength of relationships between

groups of variables.

Visual examination of the collected CPE data reveals

that a number of the variables are related to a common

system activity or function. As a result it should be

possible to linearly combine the related variables in such

V-i

.

AFIT/GCS/EE/83D-4

a way that they can be expressed with the linear

combination alone. If this was the only goal of the

analysis, then factor analysis could be used. However, an

additional requirement for the analysis is to build the

linear composites so that the super variable created will

be maximally correlated with another super variable created

using the same linear combination technique. Thus,

canonical correlation will be used to accomplish the

analysis.

CPE data variables contained in the dataset can be

grouped by system function or activity into eight

categories:

1) Variable Set:Process Execution Status

variables - R, B, W

2) Variable Set:Memory Activity

variables - AVM, FRE, KAC, RE, PIN, PO, FR, DE, SR

3) Variable Set:Disk Activity

variables = HO, Hi, AVIOAC

4) Variable Set:Processor Interrupt Activity

variables = INT, SYCL, CSW

5) Variable Set:Cpu Utilization Status

variables - CPSYSCPUSR,CPIDL,CPUUSAC,CPUSYAC

6) Variable Set:Disk Utilization

variables - ROOTFS, USRFS, LSFS, ENFS, UiFS, TMFS

V-2

* ~ ~ ~ ~ ~ ~ k e.E ~ ~ ~ ~ ~ X T ~ . 1. d. -

AFIT/GCS/EE/83D-4

- 7) Variable Set:Process Mix

variables = TROFF, NROFF, VERS, EDITS, CC, F77, PI

PC, KAREL, SWMONS, SAPROC, UTILS, SLAM,

SRUN, YACLEX

8) Variable Set:Response Time Indicators

variables - BNCHMK, REALT

As can be seen from the variable sets described, further

decomposition of the sets is possible for super variables

like memory activity and process mix. However, for this

analysis only the variable sets listed were used.

Canonical correlation was used to establish how each

of three of the variable sets (1-process execution status,

5-cpu utilization, 8-response time indicators) relate to

the remaining seven. To accomplish this part of the

analysis, only the canonical correlation as computed by the

SPSS subprogram CANCORR, was used. Of particular interest

were relationships that existed for the cpu utilizaton

group of variables. For this variable set the analysis was

taken further and canonical loadings were computed using

the file modification capability of SPSS. Using these

loadings, the derived super variables will be analyzed for

possible interpretation. Finally, the constituent variables

for the created super variables were examined for

information overlap. This was accomplished using Stewart

and Love's technique for measuring redundancy.

V-3

AFIT/GCS/EE/83D-4

Once the canonical correlation analysis was complete,

the relationships revealed between the super variables were

used to describe system activity at the general level (i.e.

set apart from the detailed activity as described by the

individual variables).

Analysis Results

The first variable set to be analyzed was the

@response time indicators.' Table V-1 shows the significant

canonical correlations for response time indicators and the

remaining seven super variables as computed by SPSS. Though

no predictor/criterion variable relationship really exists

in a canonical correlation, in this analysis the super

variable being compared to the remainder of the super

variables will be designated as the criterion variable for

model naming purposes.

Table V-1

Canonical Correlations for

Response Time Indicators

CRITERION VARIABLE: Response Time Indicators

PREDICTOR VARIABLES CANONICAL CORRELATION

Cpu Utilization(l) .72141

Cpu Utilization(2) .31150

Memory Activity(l) .78443

Memory Activity(2) .44866

V-4

AFIT/GCS/EE/83D-4

Table V-i

Canonical Correlations for

Response Time Indicators (cont'd)

Disk Activity/Disk Utilization .74942

Processor Interrupt Activfty .69591

Process Status(l) .72656

Process Status(2) .26945

Process Mix(l) .76651

Process Mix(2) .57807

As shown in Table V-i, 'response time indicators' are

significantly correlated to each of the remaining super

variables with .72 correlation or greater for initial

canonical variates. Of the super variables shown, 'memory

activity(1) has the highest correlation and explains 61.5%

of the variation in 'response time indicators.' This

indicates that increases in memory activity (i.e page

swapping) in the processing environment will result in some

increase in response time indicators.

Computed canonical correlation for 'process execution

status' and the seven remaining super variables are shown

in Table V-2.

V-5

AFIT/GCS/EE/83D-4

..

Table V-2

Canonical Correlations for Process

Execution Status

CRITERION VARIABLE: Process Execution Status

PREDICTOR VARIABLES: CANONICAL CORRELATION

Cpu Utilization Status .84810

Memory Activity(l) .97231

Memory Activity(2) .62285

Memory Activity(3) .49167

Disk Activity and Utilization(1) .91215

Disk Activity and Utilization(2) .74038

Disk Activity and Utilization(3) .38088

Process Mix(l) .75124

Process Mix(2) .64355

Processor Interrupt Activity(1) .95907

Processor Interrupt Activity(2) .54153

With 'process execution status' the correlations for

the first canonical variates are higher, with four of the

six shown being above .80. Examination of the

corresponding eigenvalues shows that variation in 'process

execution status' is over 90% explained by each of the

super variables 'memory activity' and 'processor interrupt

activity'. Thus, increases either of the two super vari-

ables will cause the process execution status to increase.

V-6

AFIT/GCS/EE/83D-4

The canonical correlations for the final variable set

analyzed are shown in Table V-3. Unlike the analysis for

the forementioned super variables, 'cpu utilization' was

further analyzed for interpretation and information

overlap.

Table V-3

Canonical Correlations for Cpu Utilization

CRITERION VARIABLE: Cpu Utilization Status

PREDICTOR VARIABLES: CANONICAL CORRELATION

Cpu Utilization Status(l) .84602

Memory Activity(l) .95047

Memory Activity(2) .53737

Disk Activity(i) .96621

Disk Activity(2) .48634

Process Mix(l) .92100

Disk Utilization(l) .70037

Disk Utilization(2) .63601

Processor Interrupt Activity(l) .97951

With the exception of 'disk utilization' , 'cpu utilization

status' was correlated at .92 or greater with each of the

other super variables. The corresponding eigenvalues

indicated that the given super variables could explain at

least 90% of the variation in 'cpu utilization status.'

V-7

AFIT/GCS/EE/83D-4

Extended Analysis of Cpu Utilization

One of the performance measures of interest in the

group of super variables used in the canonical correlation

analysis was 'cpu utilization status'. The variable set

which made up this super variable was further analyzed for

information overlap with each of the other canonical

variate variable sets. This analysis was performed using

Stewart and Love's procedures for calculating an overall

redundancy measure. The following formulas were used in the

calculations:

2
r
y * yj

v_ __ _ __ _ __ _(10)

y*

where v is the proportion of criterion variance explained
2

by y* and r is the squared loading of y on y*.
j

2 2
R - (v)(r) 11)

y y* y*x*

2
where R is the total redundancy in the criterion set given

:4, the predictor set and the summation is across all canonical

correlations (Ref 14:5-41 - 5-43).

The redundancy specifies the fraction of the variance

in the y's which can be explained by an optimal linear

combination of the x's, just as the multiple regression

V-8

AFIT/GCS/EE/83D-4

2
- ~ analysis R specifies the fraction of variance in a single

y which can be explained by an optimal linear combination

of x's (Ref 14:5-12). Prior to calculation of the

redundancy measures, canonical loadings had to be computed

for each of the constituent variable set. The canonical

loadings reveal which of the constituent variables load

most heavily with the canonical variate and hence which

variables are most important in super variable

interpretation. Table V-4 shows the computed redundancy

measures for the 'cpu utilization status' given each of the

predictor variable sets.

Table V-4

Redundancy Measures for Cpu Utilization Status

CRITERION VAR PREDICTOR VAR REDUNDANCY

cpu utilization process status .5416

cpu utilization memory activity .7328

cpu utilization disk activity .7946

cpu utilization disk utilization .4623

cpu utilization process mix .6935

cpu utilization processor intrpt activity .7892

The redundancy measures in Table V-4 revealed that the

predictor variable sets for 'memory activity' 'disk

activity' and 'processor interrupt activity' each account

for over 70% of the variation in 'cpu utilization status'.

V-9

"" -% % % "- "P %,% " ' *"" " ,. ** . ." ." o .""'• .. % .4, .. ,% .%

AFIT/GCS/EE/83D-4

Interpretative Analysis

Examination of the canonical correlations for 'cpu

utilization status' revealed that one of the strongest

super variable relationships existed with 'processor

interrupt activity'. Variables included in this set were

'int' (device interrupts per second), 'sycl' (system calls

per second) and 'csw' (context switch rate). Using the cpu

utilization canonical variate as the dependent variable and

processor interrupt activity as the independent variable,

the redundancy measure in Table V-3 indicates that 78.92

per cent of the variation in the cpu utilization status can

be explained by the interrupt activity.

Using the canonical loadings to determine which of the

substituent variables the canonical variates most

represent, implications of the computed redundancy can be

examined. Canonical loadings, computed using the SPSS

Pearson Corr procedure, revealed that the cpu utilization

variate has a strong negative correlation with 'cpsys' (r -

-.9999) while the cpu interrupt variate has a strong

negative correlation with 'int' (r = -.9955). Thus, as

'int' increases, the cpu interrupt variate decreases and a

corresponding decrease will take place in the cpu

utilization variate. Since the cpu utilization variate is

negatively correlated with 'cpsys,' *cpsys' would be

expected to show a corresponding increase. The strong

correlation between these two canonical variates indicates

V-10

-.

AFIT/GCS/EE/83D-4

that processing conditions which contain extensive

processor interrupt activity will result in high cpu

system-mode utilization.

Other strong relationships that exist reveal that

increases in memory and disk activity (which are themselves

related) will also coincide with or result in increased cpu

utilization. In all of the relationships examined, the

computed correlations and redundancy measures were

intuitively appealing. As a result, the canonical

correlation analysis provided no grounds to suspect

abnormal system behavior with respect to the variable

groups that were analyzed. If one of the examined

relationships had exhibited an unusual system behavior such

as decreasing cpu utilization as interrupt activity

increased, then possible system malfunctions may exist

which warrant further examination. Herein, lies the primary

usefulness of canonical correlation, the ability to examine

the nature of multivariate relationships within performance

data sets.

Conclusions

The canonical correlation performed in this chapter

revealed that it is a useful means of examining

correlations between groups of variables. In multivariate

performance data sets, the ability to examine how one group

of parameters varies with a second group of measures, can

V-l

AFIT/GCS/EE/83D-4

CHAPTER VI

FACTOR ANALYSIS

Analysis Objective

An analyst faced with a large set of performance and

workload data may want to determine how much of the data

contains useful information. In many cases a large set of

CPE data will contain redundant information due to

different monitors having measured the same system or job

related activity. Factor analysis provides the analyst with

a means of examining the dimensionality of a data set and

possibly reducing the dimensionality if redundant

information is present.

The primary objective of this analysis is to explore

the interdependencies that exist among the 52 variables

that make up the CPE data set. It is hoped that the size of

the data set can be reduced to a small number of factors

which contain the same information about system

performance.

For this analysis, principal component factoring

without iterations was used first. After completing the

principal component analysis, a second factor analysis was

done using classical factor analysis. With the principal

component technique all three of the rotation techniques

I.,

4 vI-I

AFIT/GCS/EE/83D-4

. . available in SPSS were used in the interpretation phase.

However, with classical factor analysis only the VARIMAX

rotation was used.

Since factor analysis is concerned solely with

interdependencies in the data, it was not necessary to

select dependent variables from the data set. For the

principal component analysis, the CPE data set was entered

to SPSS in its entirety, without variable modification or

exclusion. However, with classical factor analysis four of

the variables which were measured at zero for the full

monitored period were excluded so that the determinant

could be computed. The variables that were omitted

consisted of 2 which represent disk drives that are not

currently installed on the system and two that represent

monitored processes that were not executed during the data

collection period. Other than this modification, no other

modifications were made outside of SPSS.

Part 1 - Principal Component Analysis

Analysis Results

In performing principal component factoring, the first

part of the analysis involved the entire CPE data set.

Fifty one factors were computed with the first forty one

accounting for 100% of the variation in variables of the

data set. Of those forty one factors, only the first nine

would be kept using the factor retention rule of thumb,

ip VI-2

W.

AF IT/GCS/EE/83 D-4

k > 1. As an additional retention test, a scree test was

performed and also resulted in the retention of the first

nine factors. Bartlett's Sphericity test was not performed

due to the size of k.

The nine retained factors account for 79.1% of the

variance in the CPE data set. Table VI-1 shows a break out

of the factors and corresponding eigenvalues, with the

individual and cumulative percents of variation explained.

Table VI-1

Selected Principal Component Factors

FACTOR EIGENVALUE PCT CUM PCT

1 19.463 41.4 41.4

2 4.895 10.4 51.8

3 3.583 7.6 59.4

4 2.116 4.5 63.9

5 1.977 4.2 68.2

6 1.493 3.2 71.3

7 1.377 2.9 74.3

8 1.181 2.5 76.8

9 1.085 2.3 79.1

As shown in the Table VI-1, factor 1 (Fl) accounts for

41.4% of the variance alone. While this is over half of the

total variance accounted for by the retained factors, Fl

does not account for enough of the variance in the entire

data set to allow consideration of the underlying process

VI-3

AFIT/GCS/EE/83D-4

as being one dimensional. As expected, examination of the

factor matrix showed that the majority (29) of the 51

variables loaded Fl with loadings of .5 or greater. Since

this high loading complicated interpretation, the VARIMAX

rotated factor matrix was the first rotated factor

structure used to simplify interpretation.

Using .5 or greater as an arbitrary criterion for

significant loadings, the unrotated factor matrix shows

that two of the variables (hl,at) had high loadings on two

of the retained factors. Thus, two variables in the data

set have a complexity of two.

Initially, only the VARIMAX rotated factor matrix was

used for interpretation. While the rotation did give a more

even distribution of factor loadings, four variables had a

complexity of two (b,avm,cpusr,nuprocs). In spite of the

possible complexity problem, interpretation was attempted

using variable/factor groupings shown in Table VI-2.

VI-4

5 c.; t ."4 - *. *555 -a , a-- . . . •.* *5 '.. . . o .- -. *.j 5 ..

AFIT/GCS/EE/83D-4

Table VI-2

Principal Component Factor Groupings

FACTOR 1 FACTOR 2 FACTOR 3 FACTOR 4

FRE TROFF R FR Hi B

AT NROFF W ROOTFS CPUSYAC SYCL

HO F77 AVM REALT CPUUSAC CSW

INT VERS RE AVIOAC

CPUSR EDITS PIN KAC

CPSYS SWMONS PO ENFS

CPIDL UTILS SR USRFS

EXPS LSFS NUPROCS

PC BNCHMK

0 ------------------ -------------------------------- --------

FACTOR 5 FACTOR 6 FACTOR 7 FACTOR 8 FACTOR 9

U1FS CC DE KAREL SAPROC

TMFS

PI

Resulting interpretation of retained factors is shown in

Table VI-3.

VI-5

• . .-. . .-. . .-. .- , .. , , . . -. . - .,, . .% %

AFIT/GCS/EE/83D-4

Table VI-3

Factor Interpretations

Factor 1 = Processing Flow Intensity

Factor 2 - Processing Flow Resistance

Factor 3 - Accounting Measures of Processing Activity

Factor 4 - Processing Interrupt Activity

Factor 5 - UlFS/TMFS File System Utilization

Factor 6 = C/Pascal Compiler processing

Factor 7 = Short Term Memory Shortfall

Factor 8 - Karel Processing

Factor 9 - Accounting File Processing

As shown in Tables VI-2 and VI-3 more variables load

Fl than any other factor and as a result the interpretation

is the most general. To accomplish additional alternative

interpretations EQUIMAX and QUARTIMAX rotations were

performed. Interpretations using QUARTIMAX rotation

required an even more general description of factor 1

because variables which loaded factor 2 with VARIMAX

rotation now tended to load factor 1. Also, seven variables

now had a complexity of 2 with loadings of .5 or greater.

EQUIMAX rotation provided even distribution of variable

loadings on the retained factors. However, the combination

of variables that resulted could not be easily given

theoretical meaning. Thus, because of the problems which

VI-6

AFIT/GCS/EE/83D-4

arose with QUARTIMAX and EQUIMAX rotations, only the

interpretation using VARIMAX will be used.

Extended Analysis Using Computed Factors

A second phase of principal component analysis was

also to produce a regression model using the retained

orthogonal factors as independent variables. Of particular

interest from a CPE stand point is the model of system

response time to user interactive commands. Since variable

Ibnchmk' provides the best indication of this performance

measure, a second principal component analysis was

performed using all variables except 'bnchmk'. As expected,

results from the analysis were very similar to those for

the analysis of the entire data set. While most of the

loadings showed a slight increase, the same variables

loaded the same rotated factors, rendering the same factor

interpretations.

Using the FACSCORE parameter in the SPSS FACTOR

procedure, factor scores were computed for each case in the

CPE data set. SPSS file modification techniques were then

used to add the computed scores to the data set as

variables Fl through F9. Finally, a regression analysis was

performed using normalized values of the 'bnchmk' variable

and the computed factor scores Fl through F9. Additionally,

a regression was performed using the 'bnchmk' variable and

the set of independent variables which had been determined

VI-7

* " * m % ¢) / " L ' - I -, "". '- I'-" " " . %* -, * '

AFIT/GCS/EE/83D-4

using the S regression procedure, to be the best for

constructing a model of response time. The results of both

regressions are attached at appendices 2 and 3.

Extended Analysis Results

The regression involving 'bnchmk' and selected

variables revealed that 'avm' (active virtual memory pages)

alone in a model with a constant accounted for 53.9% of the

variation in 'bnchmk' While all regression models

constructed resulted in an overall F with significance at

CK < .005, all variables except 'avm' had an individual

significance of .053 or greater. Examination of the

computed variable correlation matrix revealed extreme

multicollinearity problems involving all variables in the

regression. Thus, the computed coefficients could not be

considered very stable.

The regression using the computed factor scores as

independent variables revealed that Fl (processing flow

intensity), F2 (processing flow resistance), and F5(ul/temp

filesystem utilization) in a model could account for 55.9%

of the variance in 'bnchmk.' Again, all remaining models

were significant at CX < .005, however, significance of

individual variables add after Fl,F2 and F5 was .07 or

greater. With the factor model, computed coefficients can

be considered stable because all factors by definition are

orthogonal and therefore, multicollinearity can not exist.

VI-8

AFIT/GCS/EE/83D-4

Thus, the removal of the possible inter-relationships

between independent variables is an obvious advantage of

performing regression with factors derived from a principal

component analysis.

C .

1.

~VI-9

WWCW2W- W .- - .. .Y 'j' 52.~t

AFIT/GCS/EE/83D-4

*. Part 2 - Classical Factor Analysis

Analysis Overview

The second phase of the overall factor analysis was to

repeat the factoring process using classical factor

analysis. This required specifying the PA2 parameter of the

SPSS FACTOR procedure. The primary difference in the two

techniques is the manner in which the unaccounted for part

of the variance in each manifestation variable is handled.

In principal component analysis this variance is ignored.

However, classical factor analysis explicitly provides for

an unexplained part of the variance in each manifestation

variable as an error term, referred to as the specific

variance. This assumption about the unexplained variance

results in a different technique for computing

communalities, which is the variance in each manifestation

variable accounted for by the retained factors.

The primary reason for performing this analysis was to

determine whether or not better interpretations would be

possible for the computed factors. Because an iterative

process is used to compute the communalites, it is possible

that the resulting factors would be loaded differently by

the manifestation variables, thus rendering a different

interpretation of retained factors.

VI-10

AFIT/GCS/EE/83D-4

Analysis Results

As mentioned earlier, a reduced data set was used in

classical factor analysis to allow computation of the

deteriminant. As with principal component analysis, the

initial factor matrix had the majority of the manifestation

variables loading the first factor. Examination of the

initial factor matrix showed that for the first three

factors, the same variables loaded the same factors, with

loadings for the classical factors, in most cases, being

slightly less. Factors four and five were loaded oppositely

by the two factoring techniques, with 'ulfs' and 'tmfs'

loading classical factor four and principal component

factor five. The remaining classical factors are not loaded

0above .5, thus interpretation of these would require

considering significant loadings at a lower value. Even

with lowering the significant loading value to .4, only

factor six could be considered to have a significant

loading. Thus, classical factors seven through nine -'nnot

be easily interpreted due to insufficient loadings of

manifestation variables.

An apparent reason for insignificance of factors seven

through nine is the resultant communalities after

iterations were completed. Convergence of communalities

occurred after 12 iterations and the resulting factors and

associated eigenvalues are shown in Table VI-4. Now, the

first nine factors account for 100% of the variation in the

VI-ll

% .' V -

£. .r r'ir r'pr~ ~ -.P .~ ~'5 - .: - 7' * - -_ V - ° .

AFIT/GCS/EE/83D-4

CPE data set, with only the first six having eigenvalues

greater than one. The first six factors alone account for

93.3% of the variation in the manifestation variables.

Thus, using the factor retention rule of thumb, only the

first six factors express the dimensionality of the data

set.

Table VI-4

Selected Classical Factors

FACTOR EIGENVALUE PCT CUM PCT

1 19.329 56.3 56.3

2 4.719 13.7 70.0

3 3.380 9.8 79.9

Q 4 1.837 5.4 85.2

5 1.690 4.9 90.2

6 1.064 3.1 93.3

7 .995 2.9 96.1

8 .725 2.1 98.3

9 .597 1.7 100.0

Factors and associated variables for the VARIMAX

rotated factor matrix are shown in Table VI-5. With the

exception of the computed values of the loadings and the

insignificant loading of factor 6, loadings for the first

seven factors in the rotated factor matrix render the same

interpretations given by rotated principal component factor

VI-12

AFIT/GCS./EE/83D-4

matrix. Since rotated classical factors eight and nine show

no loadings over .37, they do not contribute to

interpretation.

Table VI-5

Classical Factor Groupings

FACTOR 1 FACTOR 2 FACTOR 3 FACTOR 4

FRE TROFF R FR HI B

AT NROFF W ROOTFS CPUSYAC SYCL

HO F77 AVM REALT CPUUSAC CSW

INT VERS RE AVIOAC

CPUSR EDITS PIN KAC

CPSYS SWMONS PO ENFS

CPIDL UTILS SR USRFS

EXPS LSFS NUPROCS

PC BNCHMK

a- --------------------- ---------------------------------.

FACTOR 5 FACTOR 6 FACTOR 7 FACTOR 8 FACTOR 9

UIFS ???? DE? ???? ????

TMFS

-m PI

As a result of the similar variable loadings for the

classical factors, interpretation of the factors 1 through

5 and factor seven are the same as those in Table VI-3.

VI-13

PIP I, . :-r--r. .| . ! i .- I.7.v7 .' .. -.9 -277 o o - a lz .r,.., Oo ., o .o

AFIT/GCS/EE/83D-4

CPE Interpretation of Analysis Results

The results of the factor analysis showed that the

multi-faceted system activity for AFIT's SSC could be

represented by at least six to nine latent processes or

factors. The software monitor and accounting data which was

collected from the system represented three days of

activity in terms of 52 variables. Principal component

analysis reduced the CPE data set to nine factors, while

classical factor analysis reduced it to six significant

(.& > 1) factors. The factors produced tended to

characterize the data set in terms of general types of

processing activity and processing flow characteristics. In

both factor analyses, the VARIMAX rotated factors one and

two were loaded heaviest by the manifestation variables.

The resulting interpretation of factor one as 'processing

flow intensity' and factor two as 'processing flow

resistance' implied that the system performance could be

modeled and analyzed in terms of these factors.

To investigate the possible modeling use of the

computed factors, the regression performed confirmed the

hypothesis that factors one and two provided good

indicators of system performance, with approximately 60% of

the variation in rasponse time being explained by the

models developed. The models constructed showed that

increases in either of these factors would result in an

increase in system response time which is a common sign of

VI-14

AFIT/GCS/EE/83D-4

performance degradation. Thus, a study of the manifestation

variables which make up each of these factors and their

corresponding system function would be warranted in trying

to determine causes for poor system performance.

Conclusion

The ability to reduce the dimensionality of a data set

with a large number of interdependencies is the primary

utility in factor analysis. When the CPE analyst has a

conglomerate data set of workload and performance

parameters, chances are that redundant information is

present. In the 52-variable data set used for the analysis

done in this chapter, numerous parameters measured the same

aspect of system activity. For example, cpusr, cpsys,

cpidl, cpuusac, and cpusyac all measured cpu utilization.

The first three were generated by a software monitor while

the last two were taken from the system accounting file.

Use of the two factor analysis techniques allowed 79 to 100

per cent of the variability in the data to be explained by

nine independent factors. Once factors are computed, they

can be named for interpretation by using one or more of the

axis rotation techniques. Depending on complexity in the

data (i.e. the number of variables that load more than one

factor), named factors may or may not have specific

meaning. Instead a more general description of the factor

may be required.

After the factors have been interpreted, they can be

VI-15

HID-Ai38 2618 APPLICATIONS OF MULTIVARIATE STATISTICAL TECHNIQUES FOR 2/3
COMPUTER PERFORMANCE EVALUATION(U) AIR FORCE INST OF
TECH WRIGHT-PATTERSON AFB OH4 SCHOOL OF ENGI.

UNCLASSIFIED G L BRUNDIDGE DEC 83 AFIT/GC5/EE/83D-4 F/O 1211 N

Eonon EE loss
EhEEEEEEEmohhhE

Ifllflfllflf
EhhhomhEEEEshhE

IlflfllflfflfllflfflflL!"."'uuuuu...

M 1916 12 5
- 'ALEM*2 *2

I1.25 J WA 1.

MICROCOPY RESOLUTION TEST CHART
IjATIONA KWEAU1 OF STANDARDS-iou-A

S~~~ %.*.~..%.s.. % %

%.

AFIT/GCS/EE/83D-4

used just like variables. Thus the computed factor scores
for a given data set can be used in a regression. The

primary advantage of using the factors is the absence of

any interaction. By definition, factors are independent.

Therefore, depending on how well the factoring techniques

reduce the data set, and how well they allow

interpretation, factor analysis can provide the analyst

with a more compact means of examining numerous workload

and performance parameters.

VI-16

AFIT/GCS/EE/83D-4

CHAPTER VII

DISCRIMINANT ANALYSIS

Analysis Objective

When it is suspected that there is an underlying

structure to a set of data it may be advantageous to try

and identify this structure via discrimination and

classification techniques. Suppose observations in a data

set consisting of performance/workload measures could be

grouped by some aspect of system activity of job execution.

It would be helpful to the analyst to be able to

quantitatively identify these groupings using disriminating

functions. Likewise, it would be useful to be able to

examine how well new observations fit into the identified

groups via use of derived classification functions. One

means of accomplishing this is discriminant analysis.

The primary objective of this analysis is threefold.

The first step in the analysis was to determine the nature

of selected variable groupings in the CPE data set and to

examine how well derived discriminant functions can

distinguish between these groups. Second, derived

classification functions were examined to determine how

well they classified observations. Third, the significance

of differences in group centroids was examined using

VII-l

AFIT/GCS/EE/83D-4

multivariate analysis of variance.

A dummy variable was established to create groups used

in the analysis. The dummy variable used was 'resptim' and

it was based on the variable 'bnchmkl which is an indicator

of system response time. Three groups were created based on

the following values of Ibnchmkl:

Group 1 (resptim - 1) --> 0 - .2999

(good response time)

Group 2 (resptim = 2) -->.3 - .4999

(fair response time)

Group 3 (resptim - 3) -->.5 - 1

(poor response time)

Each of the groups represented a system performance

Qcondition with respect to response time. It was hoped that

the discriminant functions derived by the analysis would

provide insight into the importance that each of the

selected discriminating variables played in separating the

groups. This could in turn, reveal reasons for decreased

system response time. Also, the derived classification

functions could be used to determine the quality of

response time that could be expected from the SSC, given a

specific system performance scenario.

VII-2

AFIT/GCS/EE/83D-4

Analysis Results

The canonical discriminant function output for the

response time group analysis is shown in Table VII-l.

Table VII-1

Canonical Discriminant Functions

FUNC EIGEN PCT OF CUM CANON AFTER WILKS CHI-

TION VALUE VARIANCE PCT CORREL FUNCTION LAMBDA SOUARED

0 .030 211.099

1 10.964 85.77 85.77 .96 1 .355 62.188

2 1.819 14.23 100.00 .80

As shown in the table, the chi-squared for function 1 is

62.188, which is significant at __ - .001. The first

function accounts for 85.77% of the variance in the

discriminating variables and the second function accounts

for the remaining 14.23%. The corresponding canonical

correlations (.96 and .80) indicate that the discriminant

functions are closely related to the 'resptim' group

variable used to define the memberships of the three

groups. Table 2 shows the values of the discriminant

functions evaluated at the group centroids. The

separations between the centroids indicate that the

VII-3

-- ~ ~~~ ~~~~ ". ** *t.. *%..* . v'vv

APIT/GCS/EE/83D-4

Table VII-2

Discriminant Functions Evaluated at Centroids

Group Func 1 Func 2

1 -1.82170 .02418

2 .43583 -2.00447

3 6.92589 4.90479

discriminant functions provide for good discrimination

between group centroids. The strong centroid separation

teamed with the function significance reveal that the

discriminant functions provide a good means of

distinguishing between the three response time groups.

Examination of the standardized discriminant function

coefficients shown in Table 3, revealed that 'avm' (active

virtual memory pages) made the greatest contribution to the

first function with a coefficient of 7.7556. 'Po' (pages

paged out) made the greatest contribution to the second

function with a coefficient of -6.1343. Included in Table

3, are the unstandardized coefficients which are useful for

further computational purposes, since they have not been

adjusted for measurement scales and variability in the

original variables.

Using the standardized coefficients shown in Table 3

and the varimax rotated coefficients provided in the SPSS

output, names were given to the discriminant functions. The

VII-4

NA :NM' 0J

AFIT/GCS/EE/83D-4

first function could be called 'virtual memory use' because

of the strong impact of 'avm.' The second function could be

called 'page removal activity' because of the strong impact

of 'po'. Thus, it can be concluded that function one

discriminates between response time groups primarily based

on virtual memory being used by currently running

processes, while function two discriminates based on the

number of pages being removed from primary memory.

After examination of the discriminant functions was

completed, the derived classification functions were

examined for validity. Table 4 shows the classification

function coefficients derived using the 33 selected

discriminating variables.

Table 5 contains the actual classification results.

The results show that 89.96% of the cases were correctly

classified when cases used in the analysis were classified.

The percent correctly classified when cases not used in the

analysis were used dropped to 53.13%. Thus, while the

discriminant functions were quite useful for distinguishing

between response time groups, the derived classification

functions render just over a 50% correct classification

rate. This means that the classification functions that

were computed cannot be fully relied upon to correctly

classify new observations.

il VII-5

" ; - ' -€ ' ", '' .- .' * -. '" '"". . .". ". " ;' ' '-.-

AFIT/GCS/EE/8 3D-4

Table VII-3

Discriminant Function Coefficients

Variable Standardized Coeff. Unstandardized Coeff
Func 1 Finc 2 Func 1 Func 2

R -1.562 1.014 .290 .144E-02
B 3.847 - .518 5.336 2.491
W 1.976 .087 145.635 102.795
AVM 7.56 -1.553 .571E-02 .223E-02
FRE 3.728 .677 .490E-02 .457E-02
AT -1.819 -1.314 -1.182 -3.008
PIN 5.109 - .913 3.432 1.426
PO -5.329 -6.134 - .899 -6.171
FR -3.534 5.344 -4.124 1.821
INT - .371 1.870 -. 475E-01 .493E-01
SYCL -2.322 .224 -. 576E-02 - .296E-02

i"CPSYS -3.247 - .704 - .240 -. 239
vpNUPROCS -3.591 - .097 - .108 -. 733E-01

ROOTFS 1.201 .522 7.902 11.805
LSFS - .753 - .322 - .844 -1.244
ENFS 2.451 - .085 2.129 1.265
U1FS -1.850 - .047 -1.331 -. 903
EXPS 4.052 2.832 .603E-02 .147E-01
REALT 1.310 1.277 .291E-01 .126
CPUSYAC 3.275 1.208 11.265 14.915
AVIOAC -3.146 -1.332 - .649E-01 - .950E-01
KAC - .075 .614 - .532E-01 .643E-02
TROFF -1.124 - .647 - .224 - .431
KAREL .585 .102 .134 .123
F77 -1.322 - .926 - -596E-01 - .145
VERS - .882 .731 - .165 .201E-01
cc .197 .758 - .136 .417E-01
Pi .522 .381 .328E-01 .845E-01
PC - .219 -1.305 .335E-01 - .783E-01
SlUMONS - .420 - .124 - .188E-01 - .218E-01
SAPROC .244 - .383 2.123 - .978
SRU.J .845 .142 .469 .426
UTILS 1.582 - .247 .252E-01 .111E-01
(CONSTANT) 0.0 0.0 -423.048 -555.939

VII-6

AFIT/GCS/EE/83D-4

Table VII-4

Classification Function Coefficients

CLASSIFICATION FUNCTION COEFFICIENTS
(FISHER'S LINEAR DISCRIMINANT FUNCTIONS)

RESPTIM - 1 2 3

R 267.2635 266.6053 264.7315
B 3463.530 3470.524 3522.365
W -40531.18 -40410.94 -38755.52
AVM 4.821577 4.829932 4.882423
FRE 4.774033 4.775832 4.839227
AT -2246.173 -2242.740 -2271.196
PIN 2632.309 2637.163 2669.286
PO -5740.707 -5730.216 -5778.689
FR 282.5018 269.4973 255.3145
INT 3.094469 2.887365 2.919925
SYCL -6.794753 -6.801755 -6.859615
CPSYS -192.2012 -192.2574 -195.4753
NUPROCS -208.2490 -208.3434 -209.5480
ROOTFS 34885.73 34879.62 35012.47
LSFS -750.2603 -749.6410 -763.7170
ENFS 1903.404 1905.645 1928.204
UlFS -876.8784 -878.0512 -892.9305
EXPS 4.574522 4.558387 4.698832
REALT 99.81454 99.62531 100.6819
CPUSYAC 13373.31 13368.48 13544.65
AVIOAC -88.42795 -88.38185 -89.45993
KAC -5.960621 -5.985689 -5.975805
TROFF 70.36670 70.73673 66.30674
KAREL 164.1805 164.2336 165.9542
F77 -82.51950 -82.35920 -83.75130
VERS -31.74120 -32.15495 -33.08844
CC 359.6933 358.5386 360.5313
PI 68.42839 68.33102 69.12819
PC 5.553295 5.787792 5.463933
SWMONS -13.89146 -13.88975 -14.16234
SAPROC -2916.360 -2909.583 -2902.561
SRUN 935.1774 935.3733 941.3640
UTILS 33.41976 33.45402 33.69399
(CONSTANT) -872979.9 -872808.1 -879429.7

VII-7

AFIT/GCS/EE/83D-4

Table VII-5

*Classification Results

THESIS DISCRIMINANT ANALYSIS - RESPONSE TIME
CLASSIFICATION RESULTS FOR CASES SELECTED FOR USE
IN THE ANALYSIS

ACTUAL NO. OF PREDICTED GROUP MEMBERSHIP
GROUP CASES 1 2 3

GROUP 1 44 42 2 0
95.5 4.5 0

GROUP 2 25 6 19 0
24.0 76.0 0

GROUP 3 10 0 0 10
0 0 100.0

PERCENT OF GROUPED CASES CORRECTLY CLASSIFIED - 89.87

--

CLASSIFICATION RESULTS FOR CASES NOT SELECTED FOR USE IN
THE ANALYSIS

ACTUAL NO. OF PREDICTED GROUP MEMBERSHIP
GROUP CASES 1 2 3

GROUP 1 22 17 2 3
77.3 9.1 13.6

GROUP 2 35 15 15 5
42.9 42.9 14.3

GROUP 3 7 1 4 2
14.3 57.1 28.6

PERCENT OF GROUPED CASES CORRECTLY CLASSIFIED - 53.13

CLASSIFICATION PROCESSING SUMMARY

VII-8

AFIT/GCS/CE/83D-4

To conclude the response time group analysis, selected

discriminating variables were used in a one-way

multivariate analysis of variance (manova) with the

response time groups defining the treatment levels. With

manova, the objective was to determine whether there was a

significant difference among group centroids. Both

multivariate and univariate tests of significance indicated

that very strong differences exist between group centroids.
2

Under multivariate tests, Hotellings T equals 734028.1431,

with an approximate F of 3246662.9355. Since the F is
2

significant at __ - 0, for Hotellings T and the remaining

two statistics, the null hypothesis that the centroids are

equal can be strongly rejected. Thus, it can be concluded

that groups defined by Iresptim' have significantly

different centroids.

CPE Interpretation of Results

The discriminant analysis showed that the variables

which represented system performance and workload

indicators for the SSC could be separated into at least

three distinct groups based on the system response time

indicator 'bnchmk.' Based on the standardized coefficients

for the derived discriminant functions, it can be concluded

that the primary discriminating variables were avm' (for

function ones and 'po' (for function two). The fact that

avm' Pd po' are both virtual memory related variables

VII-9

' %% % % w V% .% V q.1,

AFIT/GCS/EE/83D-4

indicates that the level of memory use on the SSC will have

a significant impact on system response time. When current

processing requires extensive use of virtual memory,

response time will most likely be degraded. Thus, further

investigation of memory allocation and use is warranted to

gain insight into exactly why high virtual memory activity

causes degraded response time.

The manova served to further confirm the fact that

different system performance scenarios, as reflected by

different values of the selected discriminating variables,

result in distinct groups with significantly different

group centroids. These group centroids could be

investigated to determine what values of the discriminating

variables, on the average, result in a given response time

group. Variables that show extreme changes can then be

further examined for additional insight into why response

time changes.

Conclusion

The use of discriminant analysis has its primary value

in being able to determine the significance of group

differences. As an additional feature, classification

functions can be derived that will allow the analyst to

test how well observed system activity can be classified

into the groups of interest. Unlike nominal or ordinal

level data, where groups can be defined for single values

VII-IO

,~~~~~~e -.-...... . .

AFIT/GCS/EE/8 3D-4

4. :" of a selected variable, most CPE data sets require that

groups be defined based on specified intervals of a

selected performance or workload parameter. The parameter

chosen to distinguish groups should be a parameter that can

be theoretically related to the manifestation variables.

This theoretical relationship can then be used to determine

what effect a manifestation variable has on the

discriminating variable. Subsequently, it may be possible

to determine how significant the effect of the

manifestation variable is, based on how well it

discriminates between groups. Thus, as an alternative to

regression, discriminant analysis can be used to analyze

the effect a parameter or group of parameters has on

another parameter.

VII-f1

*T-. -,z X 71 .7 . V -

AFIT/GCS/EE/83D-4

CHAPTER VIII

CLUSTER ANALYSIS

In data analysis the study of relationships within a

given data set need not always be based on the existence of

strictly quantifiable relationships. Situations may exist

where the analyst desires to know what type of

interrelationships exist among variables or observations in

a data set based only on the values that these variables or

observations take on. Thus, no requirements for dependence

or independence exist and few or no assumptions are

necessary to perform an analysis of data in this manner.

One possible goal of an analysis of this type is to see how

variables/observations will group or cluster based on the

values they take on. Subsequently, the analyst can examine

the clusters with questions as to why clusters formed in a

specific order or with a certain membership. A group of

analysis techniques collectively called cluster analysis

allows the analyst to perform this type of less restrictive

examination of his data.

As stated in the discussion on cluster analysis,

objectives for using various clustering techniques on data

can be quite varied depending on characteristics of the

data, purposes for studying the data and analyst insights

into the data. The 143 performance summary intervals (PSIs)

is VIII-1

Id

- .A

AFIT/GCS/EE/83D-4

Swhich make up CPE data set one, are each characterized by

52 variables. Thus, available clustering techniques allow

for a number of different analyses to be performed. For

purposes of this research, K-means clustering was used to

perform a non-hierarchical cluster analysis of selected

subsets from CPE data set one.

The selected data subsets consisted of a combination

of one or more of the software monitor measures and all of

the monitored command frequency counts for each PMI. The

software monitor measures used included;

1) Memory Management Measures - re, pin, po, fr, sr

2) Cpu Utilization Measures - cpuusr, cpsys

In addition to the measures shown, one or more of the

following variables was included in each of the cluster

analyses:

1) BNCHMK - indicator of system response time

2) NUPROCS- count of currently running user processes

3) EXPS - number of processes executed during a PMI

It was hoped that clusters formed would provide
,4

insight into the relationship between various system

activity levels, as given by the software monitor measures,

and the types of processes which were being executed during

the associated PSI's. Those insights could in turn provide

a basis for constructing performance hypothesis related to
the impact of different types of processes on specific

aspects of system activity.

VIII-2

-w-

AFIT/GCS/EE/83D-4

The K-means clustering program used in this analysis

is a BMDP (PKA) subprogram and provided statistical and

graphical descriptions of each developed cluster. After the

clusters were generated for each of the selected data

subsets, attention was first devoted to the report of

cluster variable means for cases contained in specific

clusters. Secondly, ANOVA measures were reviewed to

determine the strength of differences in variable values

contained in each cluster.

Analysis Results and Interpretation

The first software monitor measures analyzed were

those which made up the cpu utilization measures. Four

clusters were requested in an attempt to determine whether

or not four distinguishable clusters could be formed. Shown

below are the cpu utilization means for the 4 clusters

formed.

Cluster 1: cpusr = 42.36 cpsys - 24.37

Cluster 2: cpusr = 49.17 cpsys - 20.73

Cluster 3: cpusr - 18.71 cpsys = 6.99

Cluster 4: cpusr = 64.09 cpsys = 31.24

The cluster means reveal that there are two strongly

separated clusters (3,4) and two clusters which consist of

similar cases (1,2). Cluster 3 clearly consists of low cpu

utilization PMIs with the mean overall utilization (cpusr +

cpsys) being 25.70 per cent. The bnchmk and nuprocs

VIII-3

AFIT/GCS/EE/83D-4

variables were also at their lowest in the PMI's contained

in cluster 1. Examination of the cases contained in the

cluster revealed that they were primarily PSIs from the

early morning hours when system activity is

characteristically at a low level.

Cluster 4 is at the other extreme with an overall cpu

utilization of 95.33 per cent. The cases which are closest

to the center (those which most strongly characterize the

cluster) are PMIs from prime time processing hours (0800 -

1800) and evening hours (1800 - 2300) on day2 and day3. The

absence of PMIs from dayl is probably because that day was

*. a Sunday when system activity is relatively low. From

examining just these clusters, it was possible to begin

characterizing time periods when the system was most

utilized. Means for bnchmk and nuprocs were at their

highest, with bnchmk being 50% greater than the overall

average of .318 seconds and nuprocs being 147% greater than

its overall average of 30.8. These increased values of

bnchmk indicate that during PMIs contained in cluster 4 the

system began experiencing performance degradation in the

form of increasing response time.

Examination of the types and counts of selected

processes being run during the PMIs of cluster 4 show that

counts for f77, vers, edits, cc, srun and utils were all up

at least 60% over their overall mean values. If the overall

means for the variables in the CPE data set used could be

VIII-4

AFIT/GCS/EE/83D-4

variables were also at their lowest in the PMI's contained

in cluster 1. Examination of the cases contained in the

cluster revealed that they were primarily PSIs from the

early morning hours when system activity is

characteristically at a low level.

Cluster 4 is at the other extreme with an iverall cpu

utilization of 95.33 per cent. The cases which are closest
i

to the center (those which most strongly charatterize the

cluster) are PMIs from prime time processing hours (0800 -

1800) and evening hours (1800 - 2300) on day2 and day3. The

absence of PMIs from dayl is probably because that day was

a Sunday when system activity is relatively low. From

examining just these clusters, it was possible to begin

characterizing time periods when the system was most

utilized. Means for bnchmk and nuprocs were at their

*highest, with bnchmk being 50% greater than the overall

average of .318 seconds and nuprocs being 147% greater than

its overall average of 30.8. These increased values of

bnchmk indicate that during PMIs contained in cluster 4 the

system began experiencing performance degradation in the

form of increasing response time.

Examination of the types and counts of selected

processes being run during the PMIs of cluster 4 show that

counts for f77, vers, edits, cc, srun and utils were all up

at least 60% over their overall mean values. If the overall

means for the variables in the CPE data set used could be

.4 VIII-4

; , w, ' _._ ..
9.''

AFIT/GCS/EE/83D-4

considered as representative of good system performance

then based on these clusterings one could hypothesize that

increases in process counts of 60% over these averages

results in a 50% increase in response time. In an actual

performance evaluation further data could then be collected

and analyzed, using other CPE tools, to test this

hypothesis.

The next set of software monitor measures to be

examined were those related to virtual memory management.

The mean values of the five measures involved for the four

clusters formed are shown in Table VIII-l.

Table VIII-l

Cluster Means for Memory Measures

re pin po fr sr

Cluster 1 7.32 2.79 2.06 2.29 15.00

Cluster 2 2.19 1.13 .74 .58 4.70

Cluster 3 .06 .11 .01 .01 .13

Cluster 4 10.67 2.82 2.56 2.18 21.14

Unlike the clusters for cpu utilization, these clusters

have a definite level structure, with 3, 2, 1, 4 being the

. cluster ordering for increasing levels of activity.

Cluster 3 almost exclusively contains PMIs which are from

dayl (Sunday) and the early morning hours of day2 and day3

(0100-0700). Cluster 2 PSIs cannot be characterized by any

% ,., specific time period. However, the PSIs which are contained

VIII-5

AFIT/GCS/EE/83D-4
41

in this cluster are those which have system activity levels

that are closest to the overall system mean level. Moving

to cluster 3, significant increases began to take place.

Paging activity (pin, po), page reclaims and frees (re, fr)

and page scanning by the implemented clock algorithm all

increased by at least 40 to 50 percent over the overall

4mean. The response time indicator, bnchmk, increased by

19%. While all process counts for monitored processes

increased, sharp increases to peak values took place with

karel, srun and othprocs (the difference between all

executed processes,exp, and the sum of all monitored

processes).

Cluster 4 represents the highest level and with the

exception of pi, saproc and those processes which peaked in

cluster 3, all other monitored processes peaked in this

cluster. Bnchmk had an average value of .4791, which is a

51% increase over the overall mean. Thus, with the high

activ'ty in memory management activity came degraded

performance (as compared to the mean) and a consequent

increase in response time. As with the clusters for cpu

utilization, these clusters indicated that the level

processing at which system performance begins to degrade

occurs when the number of processes increases by at least

50% over the usual system average (assuming the system

average used is defined as being indicative of acceptable

performance). In an actual performance study the

VIII-6

AFIT/GCS/EE/83D-4

hieracrchical clustering technique could be used to cluster

values of individual variables (performance activity

monitors or process counts). The results of the variable

clustering combined with what was revealed in the case

clusterings such as the two above could provide insight

.into the relationship that exists between a particular

variable and particular level of performance.

Conclusion

The utility of cluster analysis, is in it versatility

and robustness. The class of algorithms which make up the

available cluster analysis techniques provide numerous

approaches to studying inter-relationships within a data

set. While the analysis performed here extracted

performance and workload information based on cluster

composition and statistics, the analysis of clusters can be

extended. Possible extensions include, stepwise clustering,

where observations or variables in initial clusters are

again clustered with the same or additional objectives for

cluster examination. Observations in the cluster can also

be further analyzed using one or more of the analysis

techniques examined in this study.

With respect to specific CPE applications, clustering

is useful in examining the effects of system modification.

Clusters generated before and after the modification can be

examined using the approaches mentioned, with the hope that

VIII-7

4.4/-

-aFl9U W -AMT -A %P V ~~J~ - j 'P'. 7
AFIT/GCS/EE/83D-4

any observed cluster differences can be related the

\a) modification. Therefore, as seen with the application of

cluster analysis in this chapter, it is a data analysis

technique which allows relatively unrestricted exploration

of relationships that might exist in the data. Likewise, it

allows the analyst to freely speculate about his

observations as long as he realizes that in most cases, the

clusters alone will not provide the means to fully test his

speculations.

0

VIII-8

AFIT/GCS/EE/83D-4

CHAPTER IX

CONCLUSIONS AND RECOMMENDATIONS

The use of multivariate analysis techniques to study

and evaluate the peformance of AFIT's VAX 11/780 SSC proved

to be quite successful. While the information rendered by

each of the techniques was not in the form of a performance

or workload model, it did provide insight into

relationships that existed between performance and workload

parameters measured in the data. The insight gained into

the existence of relationships, their strengths, bases, and

possible causes, could subsequently lead to the

construction of testable hypotheses about different aspects

of system performance and system workload. With the

exception of OLS regression and ridge regression (which are

not true multivariate techniques) the primary value of the

techniques studied lies in the exploratory capability they

provide to the CPE analyst.

It is a common occurrence in the CPE environment for

an analyst to have available to him an abundance of system

performance and workload data and not know exactly how to

use it. The data is usually in the form of system

accounting and software monitor data from files which are

built by the system's accounting and monitor routines. In

IX-1

-T -- -. a -. i~x AV-v l

AFIT/GCS/EE/83D-4

many cases this accumulated data is either recorded and

then stored in the tape library or left untouched by system

analysts. However, results of this study show that the use

of multivariate analysis on the data can provide a means of

inexpensively monitoring certain measurable relationships

of system performance and workload.

Data collected from AFIT's SSC consisted of accounting

and software monitor data that was summarized and then

combined into data sets that reflected a three and a four

day period of system activity. Since fifty-two items of

performance and workload measures were collected, the data

set provided a good multivariate object of study. Primary

results are summarized below for each of the techniques

along with possible applications.

OLS Repression and Ridge Regression

Multiple linear regression is not a tru4 multivariate

technique. Even though a regression analysis involves more

than one variable, the goal of the the analysis is to

examine dependency of a single variable on the values of a

number of other variables. OLS regression was performed in

this study in an attempt to show its traditional use as a

modelling technique in CPE and consequently highlight some

of the problems that arise when using regression.

Results of the regression analysis rendered models

that all presented an intuitive feel for how various system

IX-2

*, P .. "

AFIT/GCS/EE/83D-4

activities were related to each other. For example, the

'runq' model indicated that the size of the process run

queue is dependent upon the number of swapped processes,

amount of memory being used, paging and disk activity, and

the number of device interrupts being processed by the cpu.

Thus, based on the signs of the coefficients one would

expect the process run queue to increase in size as metnory

usage and disk activity increased and as swapped processes,

paging activity, and device interrupts decreased.

However, assumption violation problems were revealed

in the residual analysis, and as result, all of the models

would have to be further developed before they could be

used for reliable interpretation. For example, in the

IN models for 'bnchmk'' and 'runq,' adding dummy variables to

represent time periods of data collection could provide a

possible solution to the apparent autocorrelation problem.

Likewise, use of an X transform could reduce the

heteroscedascticity problems which were apparent in the

'cpusr,' 'realt,' and bnchmk' models.

To remedy multicollinearity, ridge regression

presented a means of regression modelling which used

incremental biasing to negate the effect of strong

correlations between independent variables on the stability

of the regression coefficients. Models constructed using

various amounts of bias showed an improved interpretive

capability in the models. Thus, as an initial improvement

IX-3

e

AFIT/GCS/EE/83D-4

to a regression model, the CPE analyst could resort to

ridge regression and examine whether a small amount of bias

could be used to improve the explanative capability of a

regression model. The analyst must remember, however, that

the greater the amount of bias required the less the model

*will reflect the actual information contained in the data.

As a result, models which contain highly correlated

independent variables (r > .80) may require so much bias

that the resulting model may still be of little

*interpretive use and completely useless as a predictive

tool.

Canonical Correlation

In the situation where the analyst is not sure of how

various system functions are related, a possible first step

in analyzing performance/workload data would be to examine

how selected groups of parameters are related to each

other. For example, a possible interest would be how a

group of measures for cpu utilization are related to

measures of interrupt activity. For a study of this nature,

canonical correlation would be useful. The groups of

measures would be named and referred to as super variables

and the canonical correlation analysis would show the

correlation between the super variables. Thus, the analyst

is able to see how one general aspect of system activity

relates to another.

IX-4

* 4 *

" " . '..* ... ** v x \ '. •'

AFIT/GCS/EE/83D-4

5'. In the data sets constructed for the SSC, one of the

super variables used was 'cpu utilization status,' which

was a combination of five measures in the data set. This

super variable was related to six other super variables

constructed from the other related measures in the data

set. Examination of the canonical correlations for 'cpu

utilization status' revealed that the strongest super

variable relationship existed with 'processor interrupt

activity'. Variables included in this set include 'int'

(device interrupts per second), 'sycl' (system calls per

second) and 'csw' (context switch rate). The strong

correlation between these two super variables (also called

canonical variates) indicated that processing conditions

which contain extensive processor interrupt activity

resulted in high cpu utilization rates. Other strong

relationships that existed revealed that increases in

memory and disk activity (which are themselves related)

also resulted in increased cpu utilization.

Factor Analysis

In many instances, collected performance and workload

data contain redundant information. For example, a number

of different variables in the data set may provide

essentially the same information about cpu utilization or

memory activity, or a subset of the data set variables

together may reflect a latent underlying aspect of system

IX-5

AFIT/GCS/EE/83D-4

peformance or workload. To determine the true

dimensionality of a CPE data set the analyst could use

factor analysis to determine how much interdependency

existed in collected data.

The results of the factor analysis in this study

showed that the multi-faceted system activity for AFIT's

SSC could be represented by at least six to nine latent

processes or factors. The software monitor and accounting

data which were collected from the system represented three

days of activity in terms of 52 variables. Principal

component analysis reduced the CPE data set to nine

factors, while classical factor analysis reduced it to six

factors. The two most significant factors produced tended

to characterize the data set in terms of general types of

*processing activity and processing flow choracteristics.

The resulting interpretation of factor one as 'processing

flow intensity' and factor two as 'processing flow

resistance' implied that the system performance could be

modeled and analyzed in terms of these factors.

To investigate the possible modeling use of the

computed factors, an OLS regression was performed using

computed factor scores for each factor as independent

variables. The regression performed confirmed the

hypothesis that factors one and two provided fair

indicators of system performance, with approximately 60% of

the variation in response time being explained by the

IX-6

.40 W.(

AFIT/GCS/EE/83D-4

models developed. The models constructed showed that

increases in either of these factors would result in an

increase in system response time which is a common sign of

performance degradation. Thus, a study of the manifestation

variables which make up each of these factors and their

corresponding system function would be warranted in trying

to determine causes for poor system performance.

Discriminant Analysis

If the collected performance/workload data is

structured so that observations can be grouped based on

defined criteria, then information about a system may be

gained by studying how distinct are the predefined groups.

The analyst wishing to examine data in this manner can use

discriminant analysis to obtain this type of information.

In addition, group separation can be further analyzed using

multivariate analysis of variance (manova).

The discriminant analysis showed that the variables

which represented system performance and workload

indicators for the SSC could be separated into at least

three distinct groups based on the system response time

indicator 'bnchmk.' Based on the standardized coefficients

for the derived discriminant functions, it can be concluded

that the primary discriminating variables were 'avm' (for

function one) and 'po' (for function two). The fact that

'avm' and 'po' are both virtual memory related variables

IX-7

S. %

AFIT/GCS/EE/83D-4

indicates that the level of memory use on the SSC will have

- "' a significant impact on system response time. When current

processing requires extensive use of virtual memory,

response time will most likely be degraded. Thus, further

investigation of memory allocation and memory use is

warranted to gain insight into how high virtual memory

activity causes degraded response time.

The manova served to further confirm the fact that

different system performance scenarios, as reflected by

different values of the selected discriminating variables,

resulted in distinct groups with significantly different

group centroids. These group centroids could be

investigated to determine what values of the discriminating

variables, on the average, result in a given response time

group. Variables that show extreme changes can then be

further examined for additional insight into why response

time changes.

Cluster Analysis

With the exception of factor analysis, the application

of all tho previous techniques required existence or

imposition of some underlying structure in the data. It may

be desirable in an analysis to simply examine standardized

or non-standardized distance/similarity relationships that

exist within collected CPE data. In this situation the

analyst can use one or more of the available clustering

IX-8

-~IL .6.6-.- - a - - WNTICT

AFIT/GCS/EE/83D-4

techniques to study these type of relationships between

variables or observations.

The application of cluster analysis showed that it is

a data analysis technique which allows relatively

unrestricted exploration of relationships that might exist

in the data. Likewise, it allows the analyst to freely

speculate about his observations as long as he realizes

that in most cases, the clusters alone will not provide the

means to fully test his speculations. Examination of the

data collected from the SSC revealed that clusters could be

formed to examine how a particular type/amount of

processing affected various measures contained in the data.

The two sets of measures examined included cpu utilization

measures and virtual memory activity measures. In each case

four clusters were formed. For cpu utilization, two of the

clusters reflected the extremes in processing activity,

while the memory activity measures clustered in four

distinct levels of system activity. Examination of the

counts for various types of processes which were run during

the PMIs contained in each cluster enabled conclusions to

be drawn about the impact of different types of processes

on overall system activity level.

i IX-9

AFIT/GCS/EE/83D-4

: Consolidated Analysis Approaches

One of the primary objectives of this thesis effort

was to evaluate each of the multivariate analysis

techniques for CPE applications. As a result, the

presentation thus far has concentrated on the techniques as

individual tools. However, if the analyst has a number of4

these techniques available to him, then a consolidated

approach to data analysis may be taken. Each of the

multivariate techniques differ in the type of information

that is extracted from the data. Using one technique to

further investigate or improve results of another could

lead to more accurate performance evaluation information.

The selection of which techniques to use in a CPE

study will depend on availability and the objectives of the

analysis. In this study, consolidated approaches were used

in the regression and factor analysis chapters. OLS

regression was followed up with a ridge regression to build

a more explanative model. The interpreted factors derived

from the factor analysis were regressed to determine how

well they could explain variation in a data set performance

parameter. While only two techniques were used in these

approaches, other consolidated approaches could involve as

many as all of the techniques. Figure IX-1 shows three

possible approaches involving two or more of the

techniques.

.%.1

AF IT/GCS/EE/8 3 D-4

APPROACH 1

Factor

Regression Canonical Correlation

APPROACH 2
Re ression

Discriminant

APPROACH 3

Cluster

Regression Discriminant

Figure IX-1. Possible Consolidated Approaches

IX-11

AFIT/GCS/EE/83D-4

In APPROACH 1, the analyst begins by trying to reduce

the dimensionality of his collected performance data. If he

is successful in deriving a set of interpretable factors,

he can then regress the factors against performance or

workload parameters in the data set. The regression could

lead to a model of the parameter that is free of

multicollinearity. This would provide a good explanation of

the dependency relationships between the criterion and

predictor variables. If the factors are not interpretable,

then variables which make up the factors can be grouped

into super variables and a canonical correlation can be

done using selected pairs of supervariables. Calculating

redundancy measures for the two super variables (canonical

variates) could aid in interpreting the groupings.

When the analyst's goal is modelling parameters in a

well understood data set, APPROACH 2 could be used. OLS

regression is used first to model a selected workload or

performance parameter. Based on how well the model meets

the regression assumptions, the analyst can choose to use

the OLS model. If the OLS model violates the

multicollinearity assumption then ridge regression could be

used to improve coefficient stability and provide a better

explanatory model. If further examination of the dependent

variable is desired, the analyst can define groupings of

the independent variables based on designated intervals of

the dependent variable and then perform a discriminant

IX-12

AFIT/GCS/EE/83D-4

analysis. The independent variables are now labeled

manifestation variables and will be examined to see which

of them has the strongest influence in determining group

membership.

Finally, an analyst using APPROACH 3 is again faced

with a large data set with which he has very little

familiarity. However, in this case, the goal is not to

reduce dimensionality (the goal in APPROACH 1). Instead, he

desires to examine how the multivariate observations group

based on a selected similarity measure such as distance

from a specified or derived centroid. Applying a

non-hierarchical clustering technique to cluster cases

(i.e. the K-means cluster program used in this study), the

Uanalyst could then examine cluster membership. Ideally, he

would have specific parameters selected for comparison

between clusters so that variations in cluster membership

would have some significance. The cases which make up

clusters are essentially a new data set with

characteristics that cause them to be separable from the

other cases in the full data set. Subsequently, cases in

each of the clusters could be further analyzed using any of

the techniques presented in this study. In the example

approach given in Figure IX-l, either regression or

discriminant analysis could be used to examine selected

dependency relationships within specific clusters.

It is easy to see that the number of consolidated

IX-13

AFIT/GCS/EE/83D-4

approaches available to the CPE analyst are many in number.

Also, the approaches can vary in component techniques as

much as the performance and workload environment in which

the analyst functions. Thus, while not one consolidated

approach is applicable to all CPE situations, given the

performance data, at least one approach should exist that

would allow the CPE analyst to explore the data for

possible peformance/workload information. In the section

4that follows information gained from two or more of the

* techniques studied was used to formulate two of three

performance hypotheses presented. This should provide a

better appreciation for using consolidated approaches with

multivariate techniques.

SSC CPE Observations

5 While sole use of the multivariate analysis techniques

did not allow a complete performance evaluation to be

performed on the SSC, information gained from applying the

techniques did provide the basis forming two of the

N performance hypotheses presented on the following pages.

IX-14

AFIT/GCS/EE/83D-4

*I Hypothesis #1

** The SSC is a virtual memory machine that peaks
in performance when processing requirements raise
virtual memory use to the point where the size of
the freelist decreases to a system defined
critical threshold. At this point the overhead
involved in memory management (i.e. paging,
swapping, page scanning etc.) becomes a
significant part of the system workload. In
intense processing situations, where the number
of user processes is high, resulting in high
memory demand, the memory management overhead
becomes so significant that contention with user
processes results. Since the UNIX system
processes have priority when contending for
resources, the execution rate of user processes
is retarded and subsequently system performance
is degraded. The user sees the degraded
performance in terms of increasing response time.

0 Hypothesis justification:

--Ridge regression model indicated that the
number of user processes along with size of the
process run queue and the number of editor
process (vi,edemacs,sed) were resulted in or
coincided with the largest increases in active
virtual memory use.

--The discriminant analysis identified active
virtual memory as one of the key discriminators
between response time groups.

--The cluster analysis showed high virtual memory
use occurred when the number of user processes was

*: high. It also showed that PSIs with the highest
virtual memory use had slowest response time.

--A program (vmgraph) developed to represent
vmstat data in graphical form on a near real time
basis showed memory management activity
(piporefrsr) sharply increased whenever size
of the free list fell below 900 pages (page =
1024bytes).

IX-15

AFIT/GCS/EE/83D-4

Hypothesis #2

** Degraded performance can not be attributed to
a single type of process. When workload reaches
the point where noticeable degradations in
performance occur, the workload is usually
characterized by a uniform increase in the number
of all processes being executed. Thus,
performance degradation on the SSC is more a
problem of process quantity than process quality.

Hypothesis justification:

--None of the analyses performed identified any
one process as being constant cause of hampered
performance.

--Cluster analysis showed that PSIs where all
processing resources were being heavily used, had
a process mix that was on the average 40 to 90%
greater than usual accross all types of

0 processes.

--Factor Analysis showed that the number of user
processes was a key element of the 'process flow
resistence' factor, while all of the monitored
process types contributed to the 'process flow
intensity factor.

--Neglecting consideration of the violated
assumptions, none of the OLS regressions which
modeled key workload or performance paramenters
(i.e. runq,avmcpuusrbnchmk,cpsys) identified
any one specific process type as having a
significant impact across all models.

--Canonical Correlation revealed that no
process more significantly loaded the process mix
super variable (canonical variate). All
frequently executed processes loaded the variate
with relatively equal correlations.

IX-16

de .

AFIT/GCS/EE/83D-4

-. Hypothesis #3
5%9

** Because UNIX allows background processes the
the number of users currently logged in will
generally not be indicative of user generated
workload. This capability teamed with the fact
that the system is managed primarily as a free
resource to all users, results in frequent user
abuse of processing and storage resources.

Hypotheis justification:
(primarily based on observation)

--Observation revealed that the number of user
processes would exceed the number of logged in
users by 50 to 100 percent.

--Descriptive statistics showed that the
number of user processes was never 0, regardless
of the time of day.

--During course of this study there were frequent
occurrences of file system overflows and multiple
submission of identical background processes.

42

IX-17

AFIT/GCS/EE/83D-4

Conclusion

The use of multivariate analysis can provide the CPE

analyst with a useful alternative/supplement to regression

modeling. The ability to explore the structure,

dimensionality and relationships that exist within

collected performance and workload data could provide the

analyst with a means to form hypotheses about various

aspects of system performance. In some situations the

hypotheses would be testable based on the results given

from the multivariate technique, while other situations

would require further examination of the collected data or

collection of additional data. Thus, in addition to the

traditional use of regression analysis to study collected

performance and workload data, use of multivariate analysis

techniques give the CPE analyst an additional dimension in

his ability to analyze performance related information that

may be contained in collected CPE data.

Recommendations

In this study, six analysis techniques were used to

examine collected performance/workload data for system

performance information. The target system was the AFIT VAX

*11/780 SSC, which provided an abundance of peformance and

workload data sources. While the approach used here

primarily surveyed application and usefulness of each of

-4 the techniques, further study is warranted in using one or

more of the techniques in conjunction with other CPE tools

IX-18

4, .. •

. * ..--- .--... - --. 2JI J% . 6 - J .- F%

AFIT/GCS/EE/83D-4

to perform a more complete performance evaluation of SSC or

other selected target systems. In addition to using system

generated data, the nature of multivariate analysis allows

inclusion of other non-system related variables which

impact system performance. Thus, a workload study of the

SSC could also include data which reflects current course

offerings which require SSC support, the type of support

required, and quarter mid-term periods and major project

due dates. Using the possible problem areas revealed in

this study as a starting point, further study of the VAX

hardware and UNIX operating system teamed with the use of

traditional CPE tools (i.e. analytical or simulation

modelling) and multivariate analyses, could enable a

thorough performance evaluation of the SSC to be performed.

This would allow the potential for performance improving

hypotheses to be formulated, tested and possibly

implemented.

4 Learning Experiences

Learning experiences from this thesis effort were

many. Fundamental understanding of univariate and

multivariate statistics was greatly increased because of

the application oriented problem studied in this effort.

Working many hours on the SSC afforded time to become

comfortably familiar with UNIX operating system and many of

its conveniences. Also, having been required to use the ASD
. "

IX-i9

,'IT IT-- -P5T- - 7. . ,-1 ... '-1...:. - .

AFIT/GCS/EE/83D-4

-- . CYBER to perform most of the analyses enabled knowledge to

be gained about more than one computer system and how to

efficiently use two very different operating systems. While

all of the forementioned were learning experiences, the

most useful knowledge gained from this effort was the role

that a CPE analyst must play in evaluating a systems

performance.

Unlike the software designer/analyst, or the computer

hardware specialist the performance analyst does not

specialize in any one area of a computer system. Instead,

he must approach his job as a generalist, with at least a

*global familiarization with all major components of the

system to be analyzed, hardware and software. In addition

to the system knowledge required, skills at developing

software utilities and using different types of hardware

are almost essential. During this study, playing the role

of the performance analyst was both challenging and

rewarding and provided the most gratifying and useful

learning experience.

IX-20

4 AFIT/GCS/EE/83D-4

APPENDIX A

THE VAX 11/780 SYSTEM ARCHITECTURE

AND

UNIX OPERATING SYSTEM

Part 1 - The Vax 11/780 Architecture

AFIT's Scientific Support Processor is a VAX 11/780

super-minicomputer. Introduced by Digital Equipment

Corporation in 1978, the VAX was designed in part to remedy

the limited addressing capability of its predecessors in

the PDP-11 family. (Ref 3:429-432) However, the overall

goal for design was to provide a product with more overall

performance and functionality than the PDP-ll, while

maintaining PDP-l1 compatibility. The VAX was developed as

a system, with all hardware and software development groups

' "working together to ensure efficiency of the integrated

system.

Global System Structure

Figure A-1 (Ref 19:25) is a block diagram which shows

the VAX's global system structure. As shown in the figure,

'A-1
* A-i

AFIT/GCS/EE/83D-4

.;.. a primary component of the system is the Synchronous

Backplane Interconnect (SBI) which is an internal

synchronous data and control bus that operates on a 200 ns

period. Connection to mass storage devices and other

peripherals is provided via the MASSBUS and UNIBUS bus

systems. The VAX 11/780 can support up to four UNIBUS and

four MASSBUS adapters. Figure A-1 also shows the relative

simplicity of the VAX structure. Thus, the improved

capability of the VAX did not come at the cost of

simplicity in architectural design. In addition to the SBI,

other major system components include, 1) the processor,

which contains the CPU, a cache and a writable diagnostic

control store, 2) primary memory, 3) MASSBUS and UNIBUS

adapter(s) and 4) the Q-bus.

Figure A-2 (Ref 3:460) shows the global system

structure of the VAX using a PMS description. The following

description information corresponds to the parenthesized

numbers.

(1) Pc('VAX 11/780; microprogrammed; 8-byte instruction

buffer; data-path: 32 bits; 1 byte: 8 bits; 1 word:

2 bytes; 1 longword: 4 bytes; 1 quadword: 4 words;

variable length instructions: l:n bytes; 16 long

word general registers; Mps - apprx 17 longwords;

native and PDP-ll emulation instruction sets)

* A-2

a.a)

beI

-co
'S.:

44 W

f- 0

SW0 m

.44
V'-P4

SDo 0

4'.0

* I ~ *%i W -A* *:0 ~ *..*.-A.:*x~.

C124

owo

CA-4

AFIT/GCS/EE/83D-4

(2) Mp(ECC MOS; IM bytes -- 8M bytes; i-unit: quadwords;

8 bits ECC; t.cycle:600ns; t.access:1800ns; longword

addressable)

(3) S('Synchronous backplane interconnect; 30 address

lines (half'Mp, half I/O); 32 data lines; t.cycle:

200ns;transfer rate: 13.3M bytes/second)

(4) Mcache(8K bytes; t.cycle: 200ns; set associative)

(5) Pconsole('LSI-11)

0The Central Processor Unit
The VAX 11/780 processor has a 32 bit architecture

based on the PDP-11 family of 16-bit minicomputers. The CPU

is microprogrammed, and has a writable control store which

can be loaded from the console subsystem for diagnostic

purposes (Ref 3:460). It also contains an 8-byte

instruction look ahead buffer to increase processing speed.

Two separate D-units are used to perform shifting

operations, and integer and floating point arithmetic in

parallel. To achieve the required PDP-11 compatibility, the

microprogram can interpret two instruction sets, the VAX

native mode instructions and the PDP-11 compatibility mode

instructions.(Ref 3:461; Ref 6:24)

A-5

'J 7. V V 7P

AFIT/GCS/EE/83D-4

The CPU uses multiple address modes and stack

structures similar to those of the PDP-ll. However, the

32-bit addressing provides a large program iddress space

plus 32-bit arithmetic and data paths for increased

processing speed and accuracy. The processor uses 16

general registers for temporary storage, as accumulators,

as index registers and as base registers. The registers are

also used in the addressing modes to identify instruction

operand locations. (Ref 21:407). The ISP description of the

11/780 CPU is shown in Figure A-3 (Ref 3:462).

The addressing modes referenced earlier are listed and

defined in Figure A-4 (Ref 21:408). The modes are the same

as the PDP-11 modes except no autodecrement deferred is

implemented, and the literal, displacement and

displacement-deferred modes are unique to the VAX (Ref

21:4 8). All of the modes except the register mode can be

modified by an index register. When the index register is

used, the mode is referenced as the basic mode with the

suffix "Indexed." Thus, an additional six indexed

addressing modes are recognizable by the processor.

A

A-6."

AF IT/GCS/EE/83 D-4

R[0:15] <31:0> 16 general registers (although 4
have reserved functions as shown
below and R[0] to R[5] can also
be reserved for specific tasks)

PC :- R[15] Program counter

SP : R[14] Stack pointer; there are 4 SP
registers one for each kernel,

* executive, supervisor and user
access modes

FP := R[131 Frame pointer used for procedure
calls

AP : R[12] Argument pointer used in procedure
calls

PSL <31:0> Processor status longword

PSW <15:0> := PSL<15:0> Processor status word

CC <3:0> :- PSW<3:0> Condition codes

T := PSW<4> Trace bit

Trap bits :- PSW <7:5> integer, floating and decimal
overflows

Unused: PSW <15.8>

IPL :- PSL <20:16> Interrupt priority level

Prey. mode :=PSL <23:22>

Curr. mode :=PSL <25:24> Kernel, executive, supervisor,
user

Compatibility bit:PSL<31> Either PDP-11 or native mode

Figure A-3. ISP Description of VAX cpu

A-7

AFIT/GCS/EE/83D-4

" Autoincrement - contents of the register are used as the
address of the operand, and then incre-
mented by the size of the operand. If
the PC is the specified register, the
mode is called the Immediate mode.

Autoincrement - contents of the register are used as the
deferred mode address of a location in memory containing

the address of the operand, and then are
incremented by four (the size of an ad-
dress). If the PC is the specified
register, the mode is called the Absolute
mode.

Displacement - the value stored in the register is used
mode as a base address. A byte, word, or long-

word signed constant is added to the base
address, and the resulting sum is the
effective address of the operand.

Displacement - the value stored in the register is used
deferred mode as the base address of a table of addresses

A byte, word, or longword signed constant
is added to the base address, and the re-
sulting sum is the address of the location
that contains the actual address of the
operand.

Figure A-4. VAX Addressing Modes

ON

.

A-8

41 - .*.*v .. * _. r*C,~ .*. *. ..

AFIT/GCS/EE/83D-4

The native and compatibility mode instructions make up

an executable instruction set with over 300 different

opcodes. Native mode instructions are variable length, use

a variety of 5 data types and as stated earlier uses 16

32-bit general purpose registers. Compatibility mode

instructions use integer data types and uses 8 16-bit

general purpose registers. While native mode is the primary

instruction execution state of the machine, and

compatibility mode the secondary, the two instruction sets

are closely related and programming characteristics are

similar. As a result, user processes can execute both

native mode and compatibility mode images. In the native

mode there are 3 classes of instructions (Ref 21:408):

1) General Data Type Manipulation

a. Integer and floating-point instructions.

b. Packed decimal instructions.

c. Character-string instructions

d. Bit field instructions

2) Special Data Type/Structure Manipulation
a. Oueue manipulation instructions.

b. Address manipulation instructions.

c. User-programmed general register

control instructions.

3) Program Flow Control & Procedure Calls

A-9

JW~~~~V~ _ - T.W J ~ *w

AFIT/GCS/EE/83D-4

a. Branch, jump, and case instructions

b. Subroutine call instructions

c. Procedure call instructions

The processor recognizes 32 interrupt priority levels,

with the highest 16 reserved for hardware generated

interrupts and the lowest 16 levels reserved for software

A requested interrupts (Ref 21:409). When handling

interrupts, the processor enters a special system-wide

context during which it executes in kernel mode using a

special stack called the interrupt stack. The interrupt

stack is used only after receipt of an interrupt and thus

is not accessible by the user. Interrupt service routines

(ISR) are executed at a level corresponding to the

associated interrupt. Should a higher priority interrupt

occur, the processor will honor that request at its

priority level. When the REI (return from exception or

interrupt) is issued by the ISR the processor then returns

control to the previous level.

Primary Memory

The main memory used in the VAX is connected to the

SBI via a memory controller. Physically, it is built using

16K MOS RAM chips, and is organized into 64-bit quadwords

plus an 8-bit error correcting code (ECC). Each 64-bit read

requires an 800 ns cycle time, while a 64-bit write

requires a 1400 ns cycle time. However, the 8K byte

A-10

Z.W'.: -.~ , e.Y 7'7 .. -i J * - * *o* . b ' -.. -'.'. . - . " " ' .

AFIT/GCS/EE/83D-4

write-through memory cache results in an effective 290 ns

memory access time. The minimum memory requirement on the

VAX system is iM-bytes, while maximum memory capacity is

8M-bytes. By adding the MA 780 shared memory option, memory

on the VAX 11/780 can be expanded to 12M-bytes (Ref

21:405).

Interleaving is possible with two controllers and

equal amounts of memory on each. Interleaving is

enabled/disabled under program control. It is performed at

the quadword level because of the memory organization. The

memory controllers allow the writing of data in full 32-and

64-bit units. Also upon command from an SBI device,

individual bytes (or a single byte) may be written. (Ref

0 (21:404).

Each memory controller buffers up to four memory

access requests. This request buffering results in an

increase in memory throughput, and overall system

throughput, while decreasing the need for interleaving for

most configurations. Use of the buffer matches memory

bandwidth with that of the SBI at 13.3 million

bytes/second, primarily because it enables transaction

concurrency. For example, the memory controller can except

a WRITE command from a MASSBUS adapter while it is reading

previously requested data by the processor resulting in

increased throughput. If there were no request buffer,

there would be about a 50% degradation in memory bandwidth,

A-11

AFIT/GCS/EE/83D-4

making interleaving necessary to approach the bandwidth of

-" the SBI.

The Bus System

As stated earlier, the central connecting component of

the VAX system is the Synchronous Backplane Interconnect

(SBI). There are 84 signal lines with the data path being

32 bits wide. The remainder of the VAX bus system includes

a Physical Address (PA) bus, and a memory data (MD) bus

*which interface directly with the SBI, and the MASSBUS and

UNIBUS subsystems which interface with the SBI via

adapters. Finally, there is a 0-bus which serves as the

communication path for components of the VAX's Diagnostic

Q Subsystem. The O-bus is interfaced with the processor

through the Writable diagnostic control store as shown in

Figure A-1.

V

A- 12

b -, -a

AFIT/GCS/EE/83D-4

N Part 2 - The Unix Operating System

The AFIT VAX runs the 'Berkeley UNIX' version 4.1

operating system. This version of UNIX is a highly

embellished descendent of the UNIX operating system

developed by the Computing Science Research Group at Bell

Laboratories in New Jersey during the late 1960's. The

version is tagged 'Berkeley' due to the numerous changes

made to the standard UNIX system by a programmer group at

the University of California at Berkeley (Ref 13:6). Major

features of Berkeley UNIX include:

1) 'ex' text editor and Ivil screen editor

2) C-shell command interpreter/user interface

3) Pascal programming language system

4) Lisp interpreter

5) INGRES data base management system

While these enhanced features serve to set Berkeley

UNIX apart from other versions, the basic structure and

implementation of the operating system is unchanged. The

following discussion will highlight the structural and

functtonal aspects of the UNIX operating system in general.

UNIX is an interpretive, multi-tasking and multi-user

operating system. UNIX is composed of three major parts,

1) the kernel, 2) the file system and 3) the shell. The
A.-1

A-13

~-. -. 1 _7 j; ~VY~- ~
am.

AFIT/GCS/EE/83D-4

. kernel is the hardware interface portion of UNIX and

handles all system resource management, intra-system

communication and file system organization. The file system

is the organizing structure for data and is probably (from

the user's standpoint) the most important part of UNIX. In

addition to being a repository for data, the file system

provides a means of organizing the layout of data in

* complex yet efficient ways (Ref 13:3). Finally, the shell

is the command interpreter/user interface and is really a

system utility that translates user requests into actions

required of the kernel or other utility programs.

Kernel Implementation

The UNIX kernel is that portion of the orerating

system which exercises process control and control of the

I/O system. In performing process control, programs and

commands submitted by users are executed as user processes

until a system function is required. At this point, the

system is called as a subroutine and the process execution

environment is changed from user to system. The process

will remain a system process until the required system

function is completed. While the environment changes from

the systems viewpoint, the executing process remains the

same from the user's viewpoint.

To provide swapping efficiency, processes may execute

from a read-only text segment which is shared by all

A-14

.I,• -..... .,. , , , ' "-, " ,_. - . -. , ,.•.,.-..

AFIT/GCS/EE/83D-4

processes executing the same code. All current read-only

segments in the system are maintained from a text table

which contains the location of the text segment on

secondary memory and a count of the number of processes

sharing the segment when it is in primary memory. In the

user environment the process has a unique data segment

associated with it. This segment is used strictly by the

user and has two growing boundaries. One is the process

stack and a second is the useable data area which can be

increased only by explicit requests from the user. Also

associated with the process is a fixed size system data

segment which holds information needed by the system when

* the process is active. This data includes saved cpu

registers, open file descriptors, accounting information,

scratch data area and a stack for the system phase of the

process. Unlike the user data segment, the system data

segment can not be addressed by the user. Both user and

system data segments are swapped with the process, and with

the process, make up a process image. (Ref 4:1971-1980)

In addition to the data maintained for each active

process, a process table is maintained which contains

. information the system needs about inactive processes. This

information includes the process name, location of user and

system data segments, and scheduling information. The

process table entry is allocated when the process is

created and freed when the process terminates (Ref

A-15

5 - .. - -. w~. 'P 4.' . C

AFIT/GCS/EE/83D-4

20:1933). Throughout the life of the process, the kernel

'* ,W directly addresses the associated process table entry for

entry updates and status checks.

Processes are created by the system primitive "Fork",

which creates two nearly identical copies of a process. One

is labeled the parent while the second is called the child

process. All parts of the parent process image are

inherited by the child including open files.

I/O System

The UNIX I/O system consists of two parts--the block

I/O system and the character I/O system. Structured I/O

system and unstructured I/O system are more appropriate

0names for the two parts. Each I/O device is characterized

by a major and minor device number and a class which

indicates whether it is a block or character I/O device.

All device drivers are accessed through an array which is
indexed by the major device number. The minor device number

is then passed to the device driver and allows access to

one of the several identical physical devices. The use of

this array of entry points to the device drivers, results

in only one connection between the system code and the

device drivers, and allows easier creation and modification

of device drivers. (Ref 20:1937)

The block I/O system device driver is implemented to

emulate a model block I/O device on a physical device. The

A-16

AFIT/GCS/EE/83D-4

model block I/O device consists of randomly addressed,

* secondary memory blocks of 512 bytes (1024 in Berkeley

UNIX) each which are uniformly addressed from 0 to N where

N is the sized of the device. Block I/O devices are

accessed through a layer of buffering software which uses a

pool of system buffers, each assigned a device name and

address, to perform I/O transactions. All devices that are

not in the block I/O system are part of the character I/O

system. Whereas, block I/O devices usually include magnetic

tape and disks, character I/O devices may include these and

all character devices such as communication lines, paper

tape and line printers. Unlike block I/O device drivers,

character I/O device drivers vary depending on

A. implementation in the techniques used to handle I/O (Ref

20:1939).

File System Implementation

The UNIX system views a file as a one dimensional

array of bytes. These files are attached to a hierarchy of

directories, which are themselves files that cannot be

written by users. Disks used for file storage are viewed as

block I/O devices and consequently are manipulated as a

randomly addressable array of 512 byte blocks (1024 bytes

in Berkeley UNIX). The file system breaks a disk into four

self-identifying regions. The first block, located at

address 0, is not used by the file system but is instead

A-17

AFIT/GCS/EE/83D-4

used strictly for booting procedures. The second block is

known as the super block and contains disk size and

boundary information. The third block contains the i-list

which is the list of file definitions. Each file definition

is a 64-byte structure called an i-node, which contains the

device name (major and minor numbers) and an 1-number to

uniquely identify each file. The remaining blocks make up

the free storage blocks which are available for file

contents.

The hierarchical structure of the UNIX file system

supports three types of files. As stated above, at the top

of each level in the hierarchy is a directory file which is

a list of other files and directories. The second type of

*files are ordinary files which are used to store user and

system data. Finally, UNIX supports special files which are

used primarily in device and system resource management

(Ref 20:1941-1943).

When implemented, one file system could use an entire

disk, which is usually the case for small disks. However,

if the disk is large, it can be split into several logical

disks with file systems on each of the logical disks.

The Shell

The third portion of the UNIX system is the shell,

which is the command language interpreter. The shell

provides the most important communication channel between

A-18

-- a~~~~~ ~ ~ ~ ~ -- -A161--&- . W

AFIT/GCS/EE/83D-4

the system and its users. Even though the shell allows

users to communicate with the system it is not actually

part of the operating system. As a result, it enjoys no

special privileges and is handled by operating system

kernel as a swappable process (Ref 4:1971).

In addition to being the means of interactive user

communication, the command language supported by the shell

can also be used in user written programs. This enables

users to customize their communication interface for the

specific type of work being done on the system.

The full language accepted by the shell is complex to

the newcomer because it performs a number of functions.

However, interactive commands are handled in a straight

forward and consistent manner. A command is a sequence of

words separated by white space. The first word is always

the name of the command, which is an executable file. The

remainder of the command line contains one or a more of the

following words:

1) simple strings of characters

2) a file name preceded by <, >. >>

43 3) a string containing a file name expansion character

Simple arguments are passed to a command as an array

of strings and thereafter are interpreted by that program.

This enables uniformity in the treatment of arguments. The

<, >, and >> characters are used to redirect standard input

and output. Finally, *, ?, , and 11, characters are used to

A-19

AFIT/GCS/EE/83D-4

expand command line file name arguments.

A powerful feature of the shell is its capability to

support command line pipes. A pipe is in effect an open

file connecting two processes; information written into one

end of the pipe may be read from the other end with

synchronization, scheduling and buffering handled
0 A linear array of

automatically by the system (Ref 20:1957

processes thus becomes a set of coroutines simultaneously

processing an I/O stream. The vertical bar is used to

separate the various program names used in a pipe.

Conclusion

The VAX/UNIX combination provide a powerful processing

environment to the user. The speed and reliability built

into the VAX super-mini architecture plus the processing

versatility of UNIX allow users working under proper system

workload conditions to productively carry out their

processing tasks. While users can designate processes to be

run in the background, the AFIT SSC is configured

exclusively for interactive processing. Thus, should the

processing capability of SSC be matched with too large a

workload, any degredation in performance will be apparent

to system users.

42

I ~A20 ~ .~

. • 4 • ,, .,,*

AFIT/GCS/EE/83D-4

APPENDIX B

Data Collection and Preparation

The data collection and preparation techniques used in

this study made maximum use of UNIX performance data

sources and data preparation utilities. The plan of attack

used for generating data sets for use in the analyses

performed was three-fold. First the data available from

each of the above sources was reviewed and evaluated for

the type of performance information that was available.

Secondly, test runs were made to gain familiarization with

the formats and sources of the generated data. Finally,

monitoring periods and sampling rates were established for

the software monitors and file interrogation and data

extraction routines were developed for use on system

accounting files.

UNIX System Performance Data Sources

The UNIX system provides a number of system

accounting and performance monitoring commands to the user.

These include:

B-l

a ..J - - - -. q - - - f.ot . o o - o d-

AFIT/GCS/EE/83D-4

1) ps (process status) - process status monitor

, . 2) sa (process accounting) - accounting data summary

3) ac (login accounting) - accounting data summary

4) last (process log) - process exec. monitor

5) vmstat (activity monitor) - overall system monitor

6) iostat (activity monitor) - disk activity monitor

7) lastcomm (process log) - process exec. monitor

8) time (process run timer) - process exec timer

9) df (disk utilization) - disk utilization monitor

Of the nine commands listed, three of them ps, df,

vmstat, and iostat can be classified as system 'snapshot'

commands or software monitors. The output from these

commands give status various system components at the time

the command was issued. The other commands gather

information from system accounting files and provide

summary output of accounting data collected for a

designated period of time. Each of the commands is

explained in fair detail in the on-line documentation,

which can be reviewed using 'man' followed by the command

of interest.

Data Collection Routines

Based on the data available from each of the above

sources, the data collection routine developed incorporated

all of the snapshot commands and used only the output from

B-2

AFIT/GCS/EE/83D-4

-.4 the system accounting command sa. Two UNIX scripts,

Sp..." datascr.ldayI and datascr.ldayII, were developed to run the

software monitors at specified monitoring rates on

alternate days. The scripts collected all the output from

iostat, vmstat and df for a entire 24 hour period. Thus, at

the end of each day three files of software monitor data

were created. Because monitoring rates were high for iostat

and vmstat (I sample every 5 seconds) these files grew

rapidly and required extensive disk space. As a result,

daily dumps were made using the UNIX tape archiver 'tar,'

to avoid consuming all alloted disk space.

The system accounting data used was collected using

the script 'saptot,' which beginning at midnight, extracted

all entries made in the system accounting file \usr\acct

during the previous 24 hour period. The extraction was done

using a C program 'sap' that interrogated the system

accounting data structure used in the accounting file.

Initially, the data for the 24 hour period was then broken

into files which covered exact thirty minute periods

starting at 0000. However, after creation of the first data

set it was discovered that the software monitor data which

was collected to be summarized in 30-minute intervals was

off by as much a eight minutes due monitor lag during times

of intense processor activity. Thus, a second accounting

data script, 'sapprep' was used for generation of the

second data set. With sapprep, accounting data files were

B-3

'- . ' - - . ,V , ' , ";"' "%

AFIT/GCS/EE/83D-4

not built until after monitor data files, so that beginning

and ending times for intervals of monitored activity could

be used in creating accounting files. To do this a C

program, 'cdts.c' was developed to convert

time-date-month-year inputs into seconds since 0000 1 Jan

1970 (system time epoch used for computing current time). A

second C program, 'resap.c,' was used to format the

converted times.

Data Preparation Routines

After monitor and accounting data were collected,

several routines had to be developed to reduce the

extensive amount of monitor data and combine monitor data

with accounting data. To perform the necessary data

reduction and manipulation, extensive use was made of the

'awk' (report generator) and 'sed' (stream editor) UNIX

utilities. The routines developed performed five primary

functions:

1. Text Stripping - all non-data text was removed from

collected data files.

2. File Splitting - large monitor data files were

split into files representing approximate 30 minute

intervals of system activity.

3. Data Selection - only specific items of data were

used from the system accounting files. Items included

averaged cpu, memory and i/o activity for each interval,

frequency counts of selected types of processes executed

B-4

' ',, € ,;, 4 ? - . '-;"€' >" '.: -** * .- .'-... .'-"-'

AFIT/GCS/EE/83D-4

during each interval, and the time required to execute the

'date' command (used as benchmark to indicate response

time).

4. Data Reduction - monitor data files representing 30

minutes of system activity were averaged so that one day of

system activity was represented by a file of 48 cases.

5. Data Formatting - reduced monitor data and selected

accounting data were combined into a composite data file

and formatted.

Along with the data collection routines that follow,

are all the routines used for data set preparation. Both C

programs and UNIX scripts are documented using a program

header. In the case of documented scripts, references to

modules called will show any other scripts that are used

within that script. In some cases, scripts used within

scripts were documented as part the primary script using a

mini-header. While this implies that subordinate scripts

were contained as part of the primary script during

execution, in practice, all scripts used were separate

executable files in the same directory.

'£4

B-5

." ##
DATE: 18 July 1983

NAME DATASCR.IDAYI and DATASCR.IDAYII
MODULE NUMBER: 1.0
FUNCTION: These are UNIX scripts which were used to collect system
performance data fram AFIT's VAX 11/780. The script executed
system software monitors and redirected output from the
monitors into data files.
INPUTS: NONE.
OUTPUTS: Data collection files for four system software monitors.
GLOBAL VARIABLES USED: NONE.
GLOBAL TABLES USED: NONE.
LIBRARY R0UTINES: NONE.
FILES READ: NONE.
FILES WRITIEN: vmdataXXxxx,iodataXXxxx,dfdataXXxxx,psdataXXxxx.
.XX = date, xxxrmnth
MODULES CALLED: nps.
CALLING MODULES: NONE.
AfM R: CAPT GREGORY L. BRUNDIDGE

111###111111111#1111

set maxdays - 1 # set max number of days to run monitors

set days = 1 # initialize day counter

set runs = 288 # set max number of times run monitors per day
runs should be computed base on the sampling interval
and period set for vmstat and iostat

set x=$days
while ($x <= $maxdays) # perform data collection loop

set a-$runs
while ($a > 0)

collect ps data using nps (number of user processes)
cat sep >> psdfI; nps >> psdfI &

collect vmstat data (memory and overall system activity)
cat sep >> vmstatfI; date >> vmstatfI; vmstat 5 60 >> VmstatfI &

collect iostat data (disk activity)
cat sep >> icetatfI; date >> iostatfl; iostat 5 60 >> iostatfI &

8B-6

collect df data (disk utilization)
S "cat sep >> dfstatfI; date >> dfstatfl; dfldfform >> dfstatfl &

wait
@ a-- # decrement collection loop counter
end

create permanent data files from temp files in while loopli
echo FILE CREATIED: >> vnmatalI
cat sep >>vmdatalI; date >>vnatalI; cat vmstatfI >>vmdatalI &

echo FILE CREATED: >> iodatalI
cat sep >>iodatalI; date >>iodatall; cat iostatfI >>iodatalI &

echo FILE CREATED: >> psdatalI
cat sep >>psdatalI; date >>psdatalI; cat psdfI >>psdatalI &

echo FILE CREATED: >> dfdatalI
cat sep >>dfdatalI; date >>dfdatalI; cat dfstatfI >> dfdatalI &
wait

rm vmstatfI iostatfI psdfI dfstatfI & # remove temp files
wait

my vmdatalI -brunsys/Data/daylvmdataI & # move permanent data files to
my iodatalI -brunsys/Aata/dayliodataI & # Data directory of brunsys0~my psdatalI -brunsys/Data/daylpsdataI &
my dfdatalI -brunsys/Data/dayldfdataI &
wait

is @ x++ #increment overall loop counter

end##
#MUE NAME: NPS
#FUNCTION: This module counts the number of user
processes executing on the system.
NOE The module used in datascr. ldayI would
be normally located in the directory
frum which datascr.ldayI is being
executed. It is shown here only for
documentary purposes.

Idate_________
#echo_____
#echo total user procs:
#ps -a I c-l

B-7

MODUXLE NAME: DATASCR. l YII
FUNCTION: This module is identical to script
datldayI.scr in function but creates
-# different temporary data files (end in

II instead of I). This script was used
on alternating days with datldayI.scr
so that during overlap periods of data
collection different data files would
constructed.'

* set maxdays = 1
set days = 1
set runs = 288

set x=$days
while ($x <= $maxdays)
set a=$runs

while ($a > 0)

cat sep >> psdfII; nps >> psdfII &
cat sep >> vmstatfII; date >> vmstatfII; vmstat 5 60 >> vMstatfII &
cat sep >> iostatfII; date >> iostatfII; iostat 5 50 >> iostatfII &
cat sep >> dfstatfII; date >> dfstatfII; dfldfform >> dfstatflI &

Swait
@a-
end

' echo FILE CREATED: >> vudataII
cat sep >>VdatalII; date >>vmdatalII; cat vmstatfII >>mdatalII &

echo FILE CREATED: >> iodatalII
cat sep >>iodatalII; date >>iodatalII; cat iostatfII >>iodatalII &

4

echo FILE CREATED: >> psdatalII
cat sep >>psdatalII; date >>psdataljI; cat psdfII >>psdatalII &

echo FILE CREATED: >> dfdatalII
cat sep >>dfdatalII; date >>dfdatalII; cat dfstatfII >> dfdatalII &
wait

rm v statfII iostatfII psdfII dfstatfIl &
wait

my wdatalll "brunsys/Data/daylvmdatalI &
my iodatalII "brunsys/Data/dayliodataII &
'v P atalII -brunsys/ata/daylpsdataII &
mv dfdatalII brunsys/Data/dayldfdataIl &
wait
@x++
end

B-8
'a,. ::.4 % .'.'.".'. .. '."'. ' ;.;:". :.:' i .;''''. .. '.Sv.' i .I..IIl;

DTE: 20 July 1983
VERSION: 1.2
NAME: SAPIOT
MODULE UMBER: 1.0
SFUNCTION: This script performs automatic accounting data collec-
tion using 'sap.c' and /etc/sa'. The system accounting
file is scanned for all entries made within the last
24 hour period. These entries are copied to a raw
accounting data file which is then broken into 30 minute
intervals using sap. Each of the 48 output files from
sap are processed using sa to get summarized accounting
data files. Resulting files are based on fixed 30 minute
intervals starting at approximately 0000. They most likey
will not directly correspond to 30 minute intervals in
software monitor data.
INPUTS: NONE.
OUTPUTS: Summarized accounting data files.
GLOBAL VARIABLES USED: NONE.
GLOBAL TABLES USED: NONE.
LIBRARY ROUTINES: NONE.
FILES READ: '/usr/acct' system accounting file.
FILES WRITTE: 'saout.*' summarized accounting data files..
MODULES CALLED: NONE.
CALLING MODLES: NONE.
AUTHOR: CAPT GREGORY L. BRUNDIDGE

##

cd /usr/public/brunsys/bataroutines
set et = -date I systimw
set bt - 0
set period = 86400
set interval = 1800
set fcnt= 0

@ bt - $et - $period
date > DSAP.IOT
sap $bt Set /usr/admVacct acct.sapred >> DSAP.TOT &

wait
while ($bt < Set)
@ fcnt++
sap $bt 'expr $bt + $interval' acct.sapred sapout.$fcnt > DSAP.$fcnt &
@ bt +- $interval
end

B-9

* \...... - -- , ** .* ."-.' ."" " "-- - - - - - - - - - - - -. - - - - -

wait
while ($fcnt > 0)
date > saout. $fcnt
/etc/sa -aiji sapout.$fcnt >> saout.$fcnt &
@ fcnt-
end

wait
rm sapout. * DW*
mv acct. sapred saout.** /usr/public/brunsys/Data

B-i10

.. /*##I##########################

I ATE: 9 June 1983
VERSION: 1.6
NAME: CDI'S.C
MOCLE NUMBER: 1.0
FU CTION: This program takes a time, date, month and year as argument
and computes the number of seconds since the system current
time epoch of 0000 1 Jan 1970. The time can then be used to
interrogate system accounting files which makes time entries
based on the epoch.
INPUTS: Time Date Month Year (i.e. 183059 24 June 1983)
OUTPUTS: Number of seconds since0000 1Jan 1970
GIXAL VARIABLES USED: NONE.
GLOSAL TABLES USED: NONE.
LIBRARY ROUTIlNES: NONE.
FILES READ: NONE.
FILES kRITTEN: NONE.
MODLES CALLED: NONE.
CALLING MODULES: NONE.
AUTHOR: CAPT GREGORY L. BRNDIDGE

#define LOCTDIE 500 /* difference from g.m.t */, #define HRCLO(2400
#def ine STARMII 0000
#define STARTDATE 1
#define S 1
#define STARTYEAR 1970 /* system clock initial year */
#define LEAPYRl 1972
#define MINSECS 60 /* conversion constants */
#define HRSECS 3600
#define ERYSECS 86400
#define MONSECS 2592000
#define YEARSECS 31536000

main (argc,argv)
int argc;
char *argv[].

I
int plusdays;
long time,hours,mins;
long year,years;
long seconds ,date ,days,m,months,-
long secsyear, secamonysecsday;
long secshr, secamin,totsecse
char *month,*tinl
char *Warray [121;

plusdays = 0;

B-11

-1II!WO


~~~~~~~~~_ U - P -;- - JP 'V -71~~* W .~ W ~ .

marrayll] - "Jan"; marray[2] - "Feb"; /* Initialize month array ~
inarray(3J - "Mar"; mrarray[4] = "Apr" ;
wuay[5J - OWN"; marray(6J - "Jun";
marray[7] a Jul"; marray[B] - 'Aug";
marray[91 - "Sep"; marray[lO] "Oct";
marray[Il] - "fov"; xarray[l21 -DW

tin - argv~lJ; /* store input arguments into ~
/* comp)utational variables and */

time - ((ong) atol(tin) )/100 + WDCM; /* perform conversions where ~
/* necessary *

seconds - ((ong) atol (tin)) 410;

year - (long)atol(argv[4]);

date - (long)atol(argv[2]);

month - argv[3];

if ((time > HPCLOCK) &
(date - 1 ) &&
(strcmp(marrayl1],nmonth.) - 0))

time - time - ma=OC;O plusdays++;
I

if ((year - LEAPYRi) &A (strcmp(marray[lJ,month)frO) &
(strcmP(marray (2] ,rrnth) 1.0))
plusdays++;

else if (((strcup(marray (11 month) -0) fl(stramp(marray [2),month) -0))&
(year > LEAPYMi)

plusdays - plusdays + 1 + ((year-l) - LEAPYRi)/4;

else if ((strcnp(marray[l],month)1-0) && (strcznp(marray[2],nth)1.0) &
(year > LEAPYRi))

plusdays - pluadays, + 1 + (year - LEAPYR1)/4;

mdns - (time - STARI'rIM)%00;
hours - ((ime - STARrIE)-iuins)/100;
((date-l) && (strcp(marray[ ] ,month) -- 0)) ? (days-0) : (days-date-STAR'DATIE);

if (strcup(marray [1I month) - 0) /* determine month an make necessary ~
mn-i1; /* day count adjustments *

else if (strcup(marrayC21 month) - 0)
(Im - 2; pluadays - pluadays + 1; 1

else if (strcmp(niarray[31,month) - 0)
(Im - 31 pluedays = plusdays - 1; 1

B-12



else if (straip(inarray[4],month) - 0)
Im - ;(days>23) ? hours- : (hours-hours);

else if (stranp(iuarray[5J,uonth) - 0)
Iii - 5; hours-;]

else if (strcmp(marray61,moith) - 0)
Im - 6; pluadays - plusdays+l; hours-;!

else if (stranp(marray[7J] mth) - 0)
Im - 7;- pluadays = plusdays+l; hours-;!

else if Cstrcmp(inarray[81,moith) - 0)
1m - 8; pluadays - plusdays+2; hours-;!

else if (stranp(marray[91,month) - 0)
Im = 9; plusdays = plusdays+3; hours-;!

else if (strcmp(marray[l01,iwonth) - 0)
Im - 10; plusdays -plusdays+3;
(days'z23) ? hours- : (hourshours);

else if (strcmp(inarray[l1,nth) - 0)
[pj = 11; pluedays = plusdays+4; I

else if (strcup(narray[12],nonth) - 0)
in- 12; plusdays - plusdays+4;1

else
printf("improper monith specifiedfn");

mo~nths - mn - STA7ONTH;
years - year - ST.ARI'YEAR;

secsmn - inins *MINSECS;

secshr - hours *RES

secaday - (days~plusdays) * DYES

secomyea omyeas *OSES

printf (*%d\n" , (totsecs-secods+secsuin+secshr+secsday I e Imscs-oar))

B-13



# DTE: 20 July 1983
# VERSION: 1.5
# NAME: SAP.C
•# MODULE NUMBER: 1.0
# FUNCTION: This program interrogates the system accounting files and
# extracts accounting data entered between specified begin
# and end times.
# INPUTS: Beginning and ending times to limit data extraction.
# OUTPITS: Accounting file entries which fall within specified time
# limits provided as inputs.
# GLOBAL VARIABLES USED: NONE.
SGLOBAL TABLES USED: NOE.

# LIBRARY ROUTINES: NOWNE.
# FILES READ: '/usr/acct' system process accounting file.
# FILES WRIT77N: Reduced system accounting file..

MODLES CALLED: NONE.
# CALLING MODULES: NONE.
# AUTHOR: CAPT GREGORY L. BRUNDIDGE

*include <stdio.h>
include <ctype.h>
include <time.h>

Sinclude <utmp.h>
#include <sys/types.h>
#include <sys/timeb.h>

typedef ushort coup_t;

struct acct
I
char ac couu[101; /* Accounting command name */
cup_t acutime; /* Accounting user time */
cm pt ac stime; /* Accounting system time */
omp t ac-etime /* Accounting elapsed time */
time t ac btime; /* Beginning time */
shorE ac-uid; /* Accounting user ID
short ac-gid; /* Accounting group ID */
short ac mem; /* average memory usage */
compt ac-io; /* nuber of disk I0 blocks */
dev t actty; /* control typewriter */
cha i ac flag, /* Accounting flag */
1;

struct acct selctbuf,*sbfptr;

char *racctf;
char *wacctf;

main (argc,argv)
int argc;

B-14



I
FILE *rf;

A FILE Wf ;
long begtime;
long endtime;
timt testtime;
int gtoountri;

begtims - (long)atol(argv~l]); /* assign begin and end times provided as ~
endtium - (long)atol(argv[21); /* arguents *
/* printf(*%d %n-,begtieendtinw); *
testtim., - 0;

racctf - argv[31; /* assign names of accounting files to be read and ~
wacctf - argv[4J; /* written which were provided as argumoents *
if ((rf - fopen(racctf, "r*)) -NULL)

I
printf ( "M %s\n",racctf);
exit (1);
I
if ((wf - fopen(wacctf, "w")) -NULL)
IO:Q printf ("CM= CREATE %s\no, wacctf);
exit (1);
I

-j gtcount *0;
for 0;;
I
if CWread((struct acc *)&elcuf, sizoof(selctbuf), 1, rf) 1- 1)
(gtcount > 250))
break;
teattime - selctbuf.ac btrns,
if (teattina >- begtm && testtm < endtine)
I

/* printf("ttime-%d ",testtizus);
for (irO; WO1; i++)

*1 printf( %c0,selctbuf .ac cxmjiI);
printf (I\n*); *1

fwrite((struct acct *)&elctbuf, sizeof(selctbuf), 1, wf);

o1eo if (testtims > endtlrn.)
gtcout+;l

.xit(0);

B-15



' ; t#l########### ######tt## ##tli #itlt##i# #############t##l#### ###

# IATE: 17 Aug 1983
# VERSION: 1.1
# NAME: GETTIMS
# MODULE NUMBER: 1.0
# FUNCIONi: This script incorporates use of awk and the UNIX streamedito 0'sd to select lines (ran a1file of data ool-

lction tbues Tchi o o to thirty minute inter-
# vals. The times which are originally given in the
# form of the output frau the UNIX 'date' oumand are
# reformatted by awk for input to 'cdts', a C progran
# which converts a tlme,datemonth and year input into
# seconds since 0000 1 Jan 1970. After times are select-
# ed and written to a file, 'cdts' is written in the file
# before each time. The file is then changed to an
# executable file and executed to produce all times in
# seconds.
# INPUTS: Time files of 'date' output.
# OUTUT: Files of selected times computed in seconds.
# GLOBAL VARIABLES USED: NONE.
# GLOBAL TABLES USED: NONE.
# LIBRARY F0UTINES: NONE.
# FILES REAJ% x number of time files.
# FILES MITTm: 'convtimes.x' file of selected times in seconds.
# MODULES CALLED: NOME.
# CALLING MODULES: NONE.
# AUMOR: CAPT GREGORY L. BRUNDIDGE

-- ######################################################################

set fcnt - 1 initialize file counter
foreach i ($argv)
# reformat date output for cdts
sed -f datsedccms $i I awk '[print $4,$3,$2,$61' > ftf

# select times corresponding to 30 minute intervals
sed -e id ftf I awk 'Iif ((NR-)1II((NR-1)%6.0)) print $0 1 > formtimfile

# insert cdts before each selected time

sed -e s//cdts' '/ formtimfile > convtimfile

chmod 755 convtimfile *change mode of file to executable

convtlmfile > convtimes.$fcnt #execute file and redirect output

# rm ftf forutimfile convtimfile Iremove temporary files

@ fcnt++
end

B-16
V -. . ..,. , ,, ,,...: . .;...,''. .',:'.. .' ".', ."." ".' . ". .'.'.'........ ,,_'. %& ,'%



, ,,, ; -.,#######t#######l###################################################### EsrO:ABDT" IA.1 ~l 18

# DAuTE: 15 Aug 1983
# VERSIONI: 1.2
# NAME: RESAP.C
# MODUWLE NUMBER: 1. 0
# FUNCrIot: This program constructs a file which will later be
# changed to an executable file that regenerates ac-
# counting data files with intervals that better match
# those in the software aonitor data files.
# INPUTS: Two inputs muast be provided:
# 1. The nae of the raw accountingdata file
# which will be interrogated by the data
# selection progrim 'sap.c
# 2. The naw of the file containing adjusted times
# (in seconds) of intervals to be used in con-
# structing new accounting data files.
# OUTPUTS: A file with four entries per line:
# 1. Start time for data selection interval
# 2. End time for data selection interval
# 3. Name of raw accounting file being used
# 4. Niter to be used as a temporary file name
# G103AL VARIABLES tEED: NONE.
# GLCMA TABLES USED: NON~E.
# LIBRARY ROUTINES: NONE.
# FILES READ: File containing adjusted interval times.
# FILES MITEN: Argument portion of the file which will be used
# with sap.c to regenerate accounting data files.
# MODUES CALLED: NONE.
# CA.LING MODULES: NON4E.
# AUTWJR: CAFE G3OY L. BRUNDIrDGE

~################ill##################################i############

#define NIEIZE 10
#define MAXFILES 48
#define PERIOD 1800

#include <stdio.h>

main (argcargv)
int argci
char *argv[].

I
FILE *rf;
char *rtmefotbuf[NUMSIZE]tbuflast(NEMSIZE] ,prevtbuf[NUMSIZE];
char *racctf,*wacctf;
long lasttime, newlasttime;
int i,n;

B-17



rtimf =argvl;
racctf - argv[21;
if ((rf - fopen(rtimef, "r")) NULL)

priritf("?M Ss\n",rtimef);
*xit(l);
I

if (fscanf(rf,"%su,tbuf) I- EOF)
for(i-O; i<utUMIZE; i++)
prevtbuf [i] - tbuf [iJ;
else
exit(1);

while (fscanf(rf,"%s',tbuf) I- EOF) /~build file of arguments for sap.c ~

printf(*%s %s %s %n,prevtbuf,tbuf,racctf,n++);

prevtbuf[i] - tbuf [i];
I
lasttim - atol(tbuf);
newlasttime - lasttimw + PERIOD;~
printf("%s %d %s %dt\n 31tbuf,newlasttiius,racctf~n++);

AM exit(O);

INV

B-18



# DATE: 19 Sep 1983
# VERSION: 1.0
# NAME: SAPPREP
# MOULE N .MBER: 1.0
# FUNCTION: This script combines the function of 'resap.c' with 'awk'
# and 'sed' to generate accounting data files which coincide
# with software monitor data files over data collection in-
# tervals.
# INPUTS: Three arguments are required:
# argv[l] = Time file for use by resap.
# argv[2] - Raw accounting file name.
# argv[31 - Directory name for created accounting data files.
# OUTPUTS: Directory of accounting data files.
# GLOBAL VARIABLES USED: NONE.
# GLOBAL TABLES USED: NONE.
# LIBRARY ROUTINES: NONE.
# FILES READ: Selected raw accounting files.
# FILES WRITTEN: Directory of summarized accounting data files.
# MODLES CALLED: resap.c
# CALLING MODULES: NONE.
# AUTHOR: CAPT GREGORY L. BRUNDIDGE

# perform resap for given time file and accounting file name
resap $argv[l] $argv[2] > sapprepfl

# add fourth arguent required for sap application
cat sapprepfl I awk '[print $1,$2,$3,"sapout."$4V1 > sapprepf2
sed -e s/'Isap' '/ sapprepf2 > sapprocfil

# change file mode to executable and execute it
cluod 755 sapprocfl
sapprocf il

# summarize selected raw accouting files with sa
set fcnt = 1
while ($fcnt < 49)
/etc/sa -aijl sapout.$fcnt > saout.$fcnt
@ fcnt++
end

mkdir $argqv[3
mv saout.* $Srgv[3]

rm sapprepf? sapprocfil sapout.*

B-19



" ###l##########################################################

# DTE: 7 Sep 1983
# VERSION: 1.0
# NAME: STRIPIXr
# MODLE NUMBER: 1.0
# FUNCTION: This script uses 'sed' to remove all non-data entries
# made in collected data files.
# INPUTS: Four collected data files - vmdata* psdata* dfdata* saout*.
# (saout* is a directory of accounting data files).
# OUPUTS: Pure data files with no explanatory text.
# GLCSAL VARIABLES USED: NONE.
SGLOBAL TMBLES USED: NONE.
SLIBRARY RUTINES: NONE.
# FILES READ: Three data files and one directory of files (above).
# FILES WRITr7EN: Three pure data files and a directory of pure data
# files 'vmdstrip' 'psdstrip' 'dfdstrip' and
# saoutstrip'.
# MODXLES CALLED: sedsaout
# CALLING MOULES: NONE.
# AUTHOR: CAPT GREGORY L. BRUNDIDGE

######################################################################

# provide user instruction mssages, echo FILE ARG[MENT CRIER MUST - vndata* psdata* dfdata* saout*
echo
echo IF CRER MRS INXRECr HIT \<BRAK> AND STAW OVER
sleep 5

echo OUTPUT FILES WILL BE -> vudstrip pedstrip dfdstrip saoutstrip\(dir\)

# build pure data files

sed -f sedccoms $argv[l] > vmdstrip &
sed -f sedccums $argv[2] > psdstrip &
sed -f sedcczus $argv[3] > dfdstrip &
sedsaout $argv[4]/Isaout.?,saout.??]

od $argv[4]; nu *; .
rm $argv(l] $argv[2] $argv[3; mdir $argv[4]

# MON L NAME: SEIJSMrT
# FUNCTION: This script takes as an argument a
# directory of files and strips non-
# data entries from each of the files.
#

#
mkdir sacutstrip

B-20



-w ; - -X -.F* '~ *

set fcnt = 101
foreach i ($argv)
sed -f sedcomns $i > saout.$fcnt
@ fcnt++
end

my saout.??? saoutstrip

###################################################
# MOWLE NAME: SEDOCHM
# EUIqON: These are the 'sea' instructions used
# to remove text entries made in col-
# lected data files.

################1#################################

is/k//
/F/d
/tin/d
/-/d
/ /
/p-cs/d

,/id/d
/tty/d
/re/s/re //
/CP/s/C I
/avio/s/avio //u/s/u //
/5/s/s /I
A/s/k//
/,or/d
/Tue/d
/We4/d

5% /Fri/d
/Sat/d
/Sun/d

B-21



* D L-. - -. tl#### #########lll##############################################

# DTE: 28 July 1983
# VERSION: 1.0
# NAM~: RMINi
# MODULE NUER: 1.0

* # FUINCTICI: This script removes the summary line (line 1) of the
# vmdata files so that cumulative averages contained in
# the line will not bias the interval averages that will
# be owputed when the vmdata files are reduced.
# INPUTS: Vmdata files.

"# OUTPUTS: Vmrata files with lirne removed.
# GLZBL VARIABLES USED: NONE.
SGLCBAL TABLES USED: NONE.
# LIARY ROUT.INE: NOM.
# FILES READ: x numer of vmdata files.
# FILES WRTTN: 'vmd.x' vmdata files with line 1 removed.
# MODULES CALLED: NONE.
# CALLING MODULE : NONE.
# AUHOR: CAPT GREOMY L. BRMNDIDGE

set fcnt- 1
foteach i ($argv)

- s -e ld $i > vu.$fcnt- $1
@ fcnt++
and

oo;

B-22

.. , .. ... *..:.,'., ,. - -.:,. ;€...... :.,. --....: :.;. :... . . . .LN. ** .. *.-v'. . .. ':. ' .% : .



# DATE: 20 Sep 1983
# VERSION: 1.2
# NAME: SPLITDATA
# MODULE NMBER: 1.0
# FUNCTION: This script uses UNIX utility 'split' to break collected
# data files fran vmstat and df software monitors into
# files that correspond to 30 minutes of monitored system
# activity.
# INPUTS: Collected vmdata and dfdata files.
# xTPUTS: 48 vmdata and 48 dfdata files.
# GLOBAL VARIABLES USED: NONE.
# GLOBAL TABLES USED: NONE.
# LIBRARY R.TINES: NONE.
# FILES READ: vmdata and dfdata files.
# FILES WRITTN: 'vmdxx' 'dfdxx' split files.
# MODULES CALLED: NONE.
# CALLING MODULES: NONE.
# AUTHOR: CAPT GREGORY L. BRUNDIDGE

echo FILE ORDER MUST \- dfdstrip vmdstrip
echo IF ORDER INCORRECrh, HIT \<BREAK> AND START OVER

O sleep 5

split -6 $argv[lJ dfd &
split -360 $argv[2] vid
rmlnl vmd?? &
# cat dfd?? > dfdcond &

B-23

'Sr
i

.-~ ::' *;. " s"-:' 't., ' .v ."-



.#tt#ttI##########l###ntIntnnt#ne n ##e#n#n########n###n# *n#########

# DATE: 28 July 1983
# VERION: 1.0
# NAME: DPR
# MODULE NUMBER: 1.0
# FUNCTION: This script uses the UNIX utility 'awk' to reduce
# disk utilization data collected using the 'df' soft-
# ware monitor.
# INPUTS: Files containing df monitor data.
# OUTUTS: Reduced df monitor data.
# GLOBAL VARIABLES USED: NONE.
# GLOBAL TABLES USED: NONE.
# LIBRARY ROUTINES: NONE.
# FILES READ: x df data files.
# FILES WRITTEN: 'dfred' a reduced df data file.
# MOMLLES CALLED: dfcondreduce (awk instruction program)
# CALLING MODULES: NONE.
# A .l'R: CAPT GREGORY L. BRUNDIDGE

##############11111###11################1######11#####

foreach i ($argv)
awk -f dfdcond-educe $i > dfdred
end

# MODULE NAME:
# FUNCTION: This set of awk instructions sums up
# and averages every six lines of the
# conditioned df data to give one entry
# for each 30 minute period of the day
# monitored.

###################################################

BOGIN[i-Il;J4; I

for (J-li J<-NF; j++)
dftot[j] - dftot[j] + $j;
if ((NR%6)- 0)

for (J-l; J<4NF; j++)

dfavg[J] - dftot[J]/6;
dftot(j] - 0;

for (i-1; i<-NF; i++)
printf("%.2f ",dfavg[i]);
printf( "i" );

B-24



li tlt############## #################################################

# DTE: 27 July 1983
# VERSION: 1.0
# NAME: PSR
# MODULE NEMBER: 1.0
# FUNCTION: This is an awk script which reduces running process
# counts in ps data files. Process counts a reduced
# from 5 minute to 30 minute interval summaries.
# INPUTS: Ps data files containing intervaled counts of running
# system processes.
# OUTPUTS: Reduced ps data file.
# GLOBAL VARIABLES USED: NON~E.
# GLOBAL TABLES USED: NONE.
# LIBRARY RUxTINES: NOtE.
# FILES READ: x n duber of ps data files.
# FILES WRITTENI: 'psdred' reduced ps data file(s).
# MODULES CALLED: NONE.
# CALLING MODUJLES: N=1~.
# AUTHOR: CAPT GREGCRY L. BRUNDIDGE

9#11 ## ## 1### 11111111 ####11# ## # #####

foreach i ($argv)
cat $i I awk -f psreduce > pedredO end
###################################################
# MODLE NAME: PSREDXCE
# FUNCTION: These are the awk instructions which
# reduce the conditioned pS data file.
# Five minute interval counts are sum-
* marized into 30 minute interval counts.

#
###################################################

BEGIN[ i-;

petot - petot + $I;

if ((NR%6)- 0)

psavw iI pstot/6;
pstot n 0;
i++;
I

for (i- i<-48;i++)
printf(I %.2f\n",peavg~i])i

B-25



' ################################################################1######
# D .E: 27 July 1983
# VERSION: 1.2
# NAME: VMR
# MODL= NUMBER: 1.0
# FUCTI I:. This script summarizes collected data from the 'vmstat'
# software monitor to reflect consecutive 30 minute in-
# tervals of system activity for a given day.
# INPIS: Pure vndata files (stripped of text).
# OUTPUTS: Summarized vnata file.
# GWAL VARIABLES USED: NONE.
# GIWAL TABLES USED: NONE.
# LIBRARY ROUTINES: NONE.
# FILES READ: x number of stripped vudata files.
# FILES kRITrEN: 'vmdred' reduced vmdata file..
# MODULES CALLED: vmreduce
# CALLING MO:ULES: NONE.
# AUTHOR: CAPT GREGOY L. BRUNDIDGE

######################################################################

foreach i ($argv)
cat $i I awk -f vmreduce >> vmdred
end

O ######################llllllllllll########~########

# MOULE NAME: VNREDUCE
# FUNCTION: These are the awk instructions used
# to summarize a pure vmdata file to

reflect 30 minute intervals of sys-
# tem activity.

###################################################
I

if(NF-22)
I
for(nml ;n<-22 n++)
col [n] +-$n
I
elm if (length($1)>2)

col !j]msubstr($1,l,2);
col[21+-substr($l,3,2);
for(n 2;n<=21;n++)
col[n+l]+=$n;

else if (length($21)>2)

sz - length($21)-3;
for(nal n<=20;n++)

D-26

, •.- ... '-.'."..'.'. ," .- . .. ' "."..", ', , ,.-, '-,. "-.-.' '



* col[nJ+=$n;
co1(21]4-substr($21,1,sz);
st - length(col[211);
col[22]+-substr($21,st+l1,3);

for(n-l1-n<-22;ri++)

for(n-1 Jn<-227ri4+)
printf "S.4f ",col~n]
printf "\nl

B-27



' ' ################l#######1####1#l########ll############### ######

# DTE: 27 July 1983
# VERSION: 1.0
# NAME: IOR
# NODWE NUMBER: 1.0
# FUNCTION: This script is used to reduce collected data fran the
# 'iostat' software monitor so that each 30 minutes of
# activity are suamrized.
# INPUTS: Conditioned (stripped) iodata file.
# OUTPUTS: File of summarized iodata.
# GLBAL VARIABLES USED: NONE.
# GLOBAL TABLES USED: NONE.
# LIBRARY ROUTINES: NONE.
# FILES READ: x number of collected iodata files.
# FILES WRITEN: 'iodred' reduced iodata file.
# MODULES CALLED: ioreduce
# CALLXN MODULES: NONE.
# AUTHcR: CAP GR(EGORY L. BRUNDIDGE

##########################t###ll#l#######li###########l#lf####

foreach i ($argv)
cat $i I awk -f ioreduce
end

O 1###########################################

# MODULE NAME: IOREDUCE
# FUNCTION: These are the awk instructions for
# summarizing the collected iodata file
# into 30 minute intervals.

################################################f###

if(NFl12)
I
for(n-l;n<-12;n++)
col[n] +-$n
I
else
I
col[]+-substr($1,1,2);

ol [2] +-subtr($l,3,2)
"* for(n-21n<=ll;n++)

ol [n+l I+-$n;
I

for( n-i ;n<-12;n++)
o1[nI/NRj
for(n-lin<=12;n++)
printf "%.4f ",col[n]

B-28

" - l: C ) : . ,." ". -' " - " '' -'.* , - "* . ' '" ". -,' . - - - ". "- " " *' ' ". '" "



printf "\n"
I

'4

B-29



__ _ _ _ _ _ _ __ - W j l' . ~ ~ W~~ : . . ,~ ** . .- 7 w

# DATE: 28 July 1983
# VERSION: 1.0
# NAME: SCR
# MOCULE NUMBER: 1.0
# FUNCTION: This is an UNIX script which incorporates awk to
# extract the summary line from each accounting data file
# provided as input.
# INPUTS: Accounting data files.
# OUTPUT: File of accounting data file smmary lines.
# GLOBAL VARIABLES USED: NONE.
# GLOBAL TABLES USED: NONE.
# LIBRARY ROLTINES: NONE.
# FILES READ: x number of accounting data files.
# FILES WRITTEN: 'sadred' reduced accountin file.
# MOCXLES CALLED: NONE.
# CALLING NWLES: NONE.
# AEThOR: CAPT GREGORY L. BRUNDIDGE
$####1###########################################################

foreach i ($argv)
cat $i I awk -f sareduce >> sadred
end

0
###################################################
#MOD=L NAME: A UC
# FUNCTION: These are the awk instructions which
# extract the sumary line (line 1) of
# each entered accounting data file.

###################################################

I
if (NR-1)
print " ",$l, $2, $3, $4, $5, $6

B-30

'% ,'% '* *H*4*~*~ : . -~~ -- *'* * \. . %*'...~ % *



A,- XV F YIJ~ i r jF- -4-a- - I 7 -~ 7 - ~.-- P

#########################################################;i##########
# DATE: 27 July 1983
# VERSIN: 1.0
# NAME: MCR
# MODULE NEWER: 1.0
# FUNCTICN: This script uses awk to scan the accounting data and
# compute a count of selected groups of monitored
# mends.
# INPUTSs Accounting data files
# CI'PITS: Reduced accounting data consisting of the counts of
# selected cunds.
# GLOBAL VARIA1lES USED: NONE.
# GOBAL TABLES USED: NONE.
# LIBRARY FlOTINES: NONE.
# FILES READ: x nutber of accounting files.
# FILES WRITTN: 'mcred' file of monitored cmand counts.
# MODULES CALLED: NONE.
# CALLING MODULES: NONE.
SAUTH.OR: CAPT GREGORY L. BRUNDIDGE

#####################################################################

foreach i ($argv)
cat $i I awk -f moncois >> mcred, end
###################11#############################
# MODULE NAME: fONCOM9E
# FUNCTION: This is the set of awk instructions
# used to query accounting data files
# and tally counts of selected camands.
# The monitored catmands are associated
# with a specific location in array 'mc.'
# After counting is comleted values
# stored in the array are printed.

###################################################

BEGIN[ for (n-l;n<-l5;n++) mc[n] - 0;-

if (($7-"troff") j ($7-"vtroff"))
mC1)+- $11

if ($7-fnroff")
m (21+- $1

if ($7--karel")
mc(3)+ $I;

if (($7-"f77")jj($7-"f77passl"))
mc[41+= $1;

B-31



if (($7"vcat.uniqw) II ($7="vcat") II ($7="vpr.uniq") II ($7='"vpr"))
mc[5J+= $1;

if (($7NOvim) II ($7-"ex") I I ($7-"emacs") II ($7-Oed"))
u=16]+- $1;

if ($7inUcc")
=1c71+- $1;

if ($7-Oslaiu)
mu [81+- $1;

if (($7-"pjU)11($7'"pix")j t($7-'px'))
= 19]+- $1;

if (($7Ipc3)l($7-upcO")1 ($7-"pcl")I I($7-"pc2"))
mc[101+n $1;

if (($7-Ovntat")11I($7-miostatn)llI($7 "ps")11I($7-"df"))
n,[11]+ $1;

if (($7-sa")1j1($7-"uaptotw) II($7m-"sap"))
mcfl.2J+- $1;.if (($7-"UR.Ss) I I ($7 -"saplel) II ($7mm"replace"))
= [131+- $1;

if (C$7inwyaoc) II ($7-mlex-))
= 1141+- $1;

if (($7mnls")I I($7-'dateu)I ($7ui"catm))
=c[Is]+- $1;

]ENID[
for (n-1;n<-l5ri++)
printf %Sd ",ma[n);
priritf\n

B-32



,a .,. L,.- L _ i r.- 1- -6,, 11 -W11 -.- ' W I V m E - -'-w.1 F '-- -I---%7.- 4 .1 -- - .7-' A%;' 1V

! ######################################################################

# DTE: 20 Sep 1983
# VERSION: 1.0
# NAME: REDUCEDTA
# MODULE NUMBER: 1.0
# FUNCrION: This script executes the six data reduction scripts used
# to reduce pure data files containing software monitor and
# system accounting data files.
# INPUTS: NONE.
# OUTPUS: NONE.
# GLOAL VARIABLES USED: NONE.
# GLOBAL TABLES USED: NONE.
# LIBRARY R rIE: NONE.
# FILES READ: All text stripped collected data files.
# FILES WRITTEN: NONE..
# MODULES CALLED: vmr psr mcr dater sar
# CALLING MODULES: NONE.
# AUTHOR: CAPT GREGORY L. BRUNDIDGE

####################################################t################

cat dfd?? >> dfdcond

dfr dfdcond &

O vmr vmd.? vmi .?? &

per psdstrip &

mcr saoutstrip/* &

dater saoutstrip/* &

sar saoutstrip/* &

B-33



-- # DATE: 29 July 1983

* VERSION: 1.4
* NAME: CAIFLNS.C

NODULE NUMBER: 1.0
* FUNCTION: This program takes as arguments seven files with collected

system performance data and concatenates corresponding lines
S# fran each file. The concatenated lines are written to a cam-
# posite data file so that each line of the cumposite file
#represents one case from all the collected data.
# INPUTS: Six files of collected data and the name of the ccmposite
# data file.
# OUTPUTS: A composite data file.
# GLOBAL VARIABLES USED: NONE.
# GLOBAL TABLES USED: NONE.
# LIBRARY ROUTINES: NONE.
# FILES READ: Six files read - argv[l through argv[61, representing
# the following collected data files:
# argv[lj - vmdred (reduced vmstat data)
# argv[2] - datered (reduced data for date command)
# argv[3J - psdred (reduced ps process count data)
# argv[4] - dfdred (reduced df disk utilization data)
# argv[5] - sadred (reduced accounting file data)
# arLv[6] - mcdred (reduced monitored processes data)
.# FILES WRITTEN: One file written - argv[7] which is cmpd, the cauposite-- data file.

S# MODULES CALLED: catstr.
# CALLING MODLtES: NONE.
# AUTHOR: LT BNEGOR L. B IDGE

#define MAX=N 240 /* max size of input file line *I
#define COMPMAXLN 720 /* max size of caubined file line */
#define NMUSTR #\Of
#define NEWL #\no
#define BLANK I
#define NtULINES 48

# include <stdio.h>

main(argc,argv)
int argc;
char *argv[];
[
FILE *fopen( ) *cmpfp,*vmfp*psfp,*bmkfp,*dffp, *safp,*mcfp,*nufp;
register char inlnMAXLN] ,outln[COPMAXLN];

', int i,l;

B-34

*..* -* - .* i..

!' '.. -.'.%..'_.'...; ., % . .<-'% % % . "-" t "% , " "---. - ..- ,.'.,.' . '."'.. -.•"•"-"-"



JD~j -7-0 M. V. W~ .1*F-. -3 -.-- . .- * 7*-.. :

vmfp = fopen(argv[l1, "r"); /* assign file descriptors for input files ~
bmkfp =fopen(argv[2], "r");
psfp = fopen(argv[31, "r");
dffp =fopen(argv[4J, "r");
safp, = fopen(argv(5], "ru);
mcfp -fopen(argv(6], "r");
cmpfp - fopen(argv[7], "w");
for (1-1; lQ-NRLINES; 1++) /* for each of the input files get a line ~

9, I /* and concatenate it with the previous line ~
fgets( inln,MAXtNvmfp);
catstr(outln,inln);

fBgets(inln,MAXLN,tuukfp);
catstr(outln,inln);

fgets( inln,MAXLN,psfp);
catstr(outln,inln);

fgets( inln,MAXLN,dffp);
catstr(outln,inmm);

fgets(inln,MAXLN,safp);
catstr(outln,inln);

0 fgets( inln,MAXLN,mc'fp);
catstr(outlri,inln);

K'.fputs(outln,cmpfp); /* write concatenated line to calpxsite file*/
for U-0; i<CCt4P!AXLN; i++)
outin~i) - NULLSTR;

# t4)IXIE NAME: CA.TST
# FUNCTION: This is a modified version of the stringcat function
# found in C. It takes as arguments two strings and
# concatenates the first to the last and replaces all

# nelin chractrsexcpt te lstwith a &p~ace.

catstr(s,t)
char s[3, t(];

mnt i, J;

*1 while ((si] I- NULLSTR) &&(sil I- NEWLN))

while ((ttj I-! NUILSTR) &&(t~ji I- NEWLN))
s[i++l - t[J++];

~ s[i++] = BLANK;
SEJi+ - NEWLN;

B-35



rlb-hR13 268 APPLICATIONS OF MULTIVARIATE STATISTICAL TECHNlQUES FOR 3/3
COMPUTER PERFORMANCE EVALUATION(U) AIR FORCE INST OF
TECH WRIGHT-PRTTERSON AFB OH SCHOOL OF ENGI.

UNCLASSIFIED G L BRUNDIDGE DEC 83 AFIT/GCS/EE/83D-4 F/G 1211 NLmhh ThEh w

|||m||



--. ~ -- %-~ -*. ..

162~

V

rnEM 1 2.2

iwi

MICROCOPY RESOLUTION TEST CHART
%VTWKM WUUA OF STAINDAKM6 62A

, ,4. U

44 .'J

_2s



lf############## #### ####### ##########################################
# DATE: 3 Aug 1983
# VERSION: 1.3
# NAME: FIXSCRr
# MDLE NUMBER: 1.0
#* vrrION: This script formats the composite data file created fran
# the 6 collected data files using 'catflns7. Columns
# are separated by a single space and the 51 entries per
# line are broken into x lines for use by data analysis
# pograuw
# INITS: A cosite data file.
# 0TIIIS: Formatted coposite data file.
# GECM VARIABLES USED: NONE.
# GMBL TABLES USED: N=U.
# LIBRARY IOU7TNES: NOWE.
# FILES READ: 'ccwdset*' capposite data files.
# FILES WRITTE: *cczpdset*fixt formatted data file.
# MODLES C LLED: fixcampdset
# CALIG MODULES: NOE.
# AUlOR: CAPT GREGORY L. BR(RIDE

######################################################################

s fc t i 1forac i ($a-gv)
cat $i Iawk -f fixcaqpset > cudset.fcnt
@ fcnt++
end
@ fcnt-
cat ccaipdst.* >> DYS.fcnt a

###################################################
# MODLE NAME: FIXOOIFCSEr
# FUNCTIIN: These are the awk instructions used
# to format the camposite data file.

###################################################

I
printf am_"r a
for (iw=i<=7; i++)
printf $i"
printf \%nw

for (i4;i<=l5yi++)
printf $i"
printf "Nn"

B-36



for (i-16;i<-22;i++)
printf $in
priritf OVi3

for (i-23;i<-3O;i-I)
printf $ in
printf *\nu

for (i.31i<36;i++)
printf $inU
printf O\n"

for U=-37; i<-Sl i++-)
printf $in1
priritf w'nf

B-37



AFIT/GCS/EE/83D-4

Bibliography

1. Agrawala, A. K. and J. M. Mohr. "Some Results of the
Clustering Approach to Workload Modelling," Proceedings
of the Thirteenth Meeting of the Computer Performance
Evaluation Users Group, 23 - 28, 1977.

2. Anderberg, Michael R. Cluster Analysis for
Applications. New York: Academic Press, 1973.

3. Baer, Jean-Loup. Computer Systems Architecture.
Rockville, Maryland: Computer Science Press Inc., 1980,
pp 429-487.

4. Bourne, S. R., 'The UNIX Time-Sharing System: The UNIX
Shell, The Bell System Technical Journal, July-August
1978, pp 1971-1989.

5. Bourne, S. R. The UNIX System. Reading, Massachusetts:
Addison-Wesley Publishing Company, 1982.

6. Eckhouse, R. H., and Levy, Henry M. Computer
Programming and Architectureg The VAX-11. Bedford,
Massachusetts: Digital Press, 1980, pp 13-54.

7. Ferrari, Domenico. Coster Systems Performance
Evaluation. Englevood Cliffs, New Jersey: Prentice
Halle Inc., 1978.

8. Hartrum, Thomas C. and Jimmy W. Thompson. "The
Application of Clustering Techniques to Computer
Performance Modelling," Proceedings of the Fifteenth
Meeting of the Computer Performance User's Group,
October 1979.

9. Hrishikesh, D. Vinod and Aman, Ullah. Recent Advances
in Regression Methods. New York: Marcel Dekker, Inc.,
1981.

10. Gomaa, H. 'A Modelling Approach to the Evaluation of
Computer System Performance,' 171-179. Modelling and
Performance Evaluation of Computer Systems. North
Holland Publishing Company, 1976.

11. Magavero, Gregory. A Study of Multivariate Statistical
Analysis Techniques for Computer Performance
Evaluation, Masters thesis. Air Force Institute of
Technology, Wright-Patterson A.F.B., Ohio, 1982.

BIB-1



AFIT/GCS/EE/83D-4

12. McGilton, Henry and Morgan, Rachel. Introducing the
UNIX System, McGraw-Hill Book Company, New York, NY.,
1983, pp 1-129,415-540.

13. McIlroy, M. D., Pinson, E. N., and Tague, B. A. "Unix
Time-Sharing System: Foreword," The Bell System
Technical Journal, July-August 1978, pp 1899-1904.

14. McNichols, Charles W. An Introduction to: Applied
Multivariate Data Analysis, unpublished text. School of
Engineering, Air Force Institute of Technology, Wright
Patterson A.F.B., Ohio, 1980.

15. Meter, John and Wasserman, William. Applied Linear
Statistical Models. Homewood, Illinois: Richard D.
Irwin, Inc., 1974.

16. Ritchie, D. M. and Thompson, K., "The UNIX Time-Sharing
System," The Bell System Technical Journal, July-August
1978, pp 1905-1928.

17. Stopher, Peter R. and Meyburg, Arnim H. Survey Samplinc

and Multivariate Analysis for Social Scientist and
En neers. Lexington, Massachusetts: Lexington Books,

18. Stover, Margaret A. Application of Statistical Analysis
Techniques to Computer Performance Evaluation, Masters
thesis. Air Force Institute of Technology,
Wright-Patterson A.F.B., Ohio, 1981.

19. Swarz, Robert S. "Reliability and Maintainability
Enhancements for VAX 11/780," The Eighth Annual
International Conference on Fault-Tolerant Computing,
June 21-23,1978, pp 24-28.

20. Thompson, K., "The UNIX Time-Sharing System: UNIX
Implementation," The Bell System Technical Journal,
July-August 1978, pp 1931-1945.

21. DEC VAX-Il Systems, DATAPRO RESEARCH CORPORATION (DRC),
DelranNJ.,1982, pp401-412.

22. IS' A Language and System for Data Analysis, Bell
Laboratories, January, 1981.

23. BMDP Statistical Software 1981, Berkeley, California:
University of Berkeley Press, 1981.

24. SPSS Statistical Package for the Social Sciences,
Second Edition, New York: McGraw-Hill Book Company,
,1975.

.° BIB-2



AFIT/GCS/EE/83D-4

VITA

Gregory L. Brundidge was born on 23 September, 1957 in

Panama City, Florida to Mr and Mrs Joe T. Brundidge. He

graduated from Bay High School, Panama City, Florida, in

1975. In 1979 he graduated from the United States Air Force

Academy with a Bachelor of Science in Biological Sciences.

After graduation he served as an Admissions Advisor for the

Academy's Minority Affairs Division. He then attended the

Comunications Officer Course at Keesler Air Force Base,

Mississippi. Upon completion of the course, he was assigned

to Tactical Communications Division (TCD), at Langley Air

Force Base, Virginia as a Communication Systems Maintenance

Officer. While stationed at Langley, he married the former

Diane Clayton of Panama City, Florida. He served as a fixed

communications maintenance manager for TCD until entering

the School of Engineering, Air Force Institute of

Technology, in Juno 1982.

Permanent address: 1121 Wilson Avenue

Panama City, Florida 32401

o ~ .~~- J *\ .q.\ - *



UNCIJ.!1SIFIED O HSPG

SECURITY CLASSIFICATIONOFTIPAEA > ARBS
REPORT DOCUMENTATION PAGE

REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS
UNCLASSIFIED

2.SECURITY CLASSIFICATION AUTHORITY 3. ISTRIUUTIONIAVAI LABILITY OF REPORT

ft OUCLAUSIF ICATIONdIDOW#4NGRAOING 60PL Approved for public release;
distribution unlimited.

* 4L PERFORMING ORGANIZATION RaPORT NUM06ERSI S. MONITORING ORGANIZATION REPORT NUMUERfIS)

AFIT/GCS/EE/83D-4

G&. NAME OF PERFORMING ORGANIZATION OFFICE SYMBOL 7&. NAME OF MONMITORING ORGANIZATION

School of Engineering AFIT/ENG

Ga. AORE8 V(01y. Slat aa ZIP Code) 7b ADDRESS8 (0T 84808 41d ZIP Cad)

Air Force Inutitute of Technology
Wright-Patterson AFB, Ohio 45433

I& NAME OF FUNDING/SPONSORING 1g.OFFICE SYMBOL S. PROCUREMENT INSTRUMENT 10OENTIFICATION NUMBER
ORGANIIZATION J III osaw)u

a A00O1169 WHYb. Stae and ZIP Cod.) 106 SOURCE OF FUNDING NOS. e_____

PROGRAM PROJECT TASK WIORK UNPF

SeI lx1EEMENT NO. NO. NO. .0

I* I TITS.S tObcide Sffurot lasiiain

12. PERSONAL, UTHOHtS)
* - Gregory L. Izundidge, B.S., Capt, USAF

3& TYPE OF REPORT 13b. TIME COVE RED 14. ATE Of REPORT (Yr.. M., on; Is. PAGE COUNT
HS Thesis IFROM _ TO 1983 December 195

W0 SUPPLEMENTARY NOTATION

1?. COSATI COD 6S IS. SUBJECT TERMS lConflnue an Avera. if ner e"d ddntIt by M0ck 4111116r)

FIELD GROUP SUB. GR. I Computer Performiance Evaluation, Multivariate Analysis.'
09 0j Statistical Analysis, Statistical Modeling,

I I Pe rformance !rodelIi k,- 1orlkioacl Mlodel ina
IS. ABSTRACT Wendiftuw on owwrae it' owcra# and idenuift by Nloct Xnumber)

Title: Apliations of Mlultivariate Statistical Tehliiques
For Computer Performiance Evaluation r'u e'cme: LAW AFR 19Q4W.

Thesis Chairm~an: Thomas C. art rum, Ph.. A Form Initul .1 T' cnaeffoa e~~~

29 0ITRIBUTIONIAVAILABILITY OF ABSTRACT 21. ABSTRACT SE(;uRIfY CLASSIFICATION

*UPCLASSIPIEOIUNLIMITEO QJ SAME AS RPT. 0 OTIC USERS 0 UTNCTJf:S I F f1 )

'P UL NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER 22.. OFF ICE SYMBOL.~
* V (inclue A me Code)

Thomas C. flartrum, Ph.D. . 53T2YjrCi?

00 FORM 1473.83 APM S1ION or i JAN 7351 OSOLETE. 1ThCLASSIFIED
SCURITY CLASSIFICATION1 OF THN PA

'III.



UNCLASSIFIED

011TV CLAUI~e CAT O OOf T04S PAGE

In many situations the computer performance evaluation
(CPE) analyst has collected an abundance of computer system
performance data from the target system's accounting files
and software monitors. Traditionally. regression analysis
provided the primary means of examing CFE data sets. with
the emphasis being on modeling specific workload and per-
formance parameters. Multivariate analysis techniques pro-
vide the analyst with additional analysis tools for the exam-
ination of relationships, dimension, and structure of large
amounts of data. This study examines possible, CPr applica-
tions for four multivariate analysis techniques. The tech-
niques studied Include: Canonical Correlation, Factor
Analysis, Discriminant Analysis, and Cluster Analysis. Also
included In the study was the use of ordinary least squares
reglession modeling and ridge regression modeling,%to exemp-
lify the traditional problems encountered with use of re-
grension analysis. Depending on the performance evaluation
requirements, one or more of the nultivariate techniques or
ridge regression could be used to perform a preliminary or
supplementary CPE data analysis.

SECURITY CLASSPICAION OP TMGAiP



DIC


